

A Multi-Packet Signature Approach to
Passive Operating System Detection

Annie De Montigny-Leboeuf

The work described in this document was sponsored by the Department of National Defence under
Work Unit 15bf.

Defence R&D Canada √ Ottawa
TECHNICAL MEMORANDUM

DRDC Ottawa TM 2005-018

Communications Research Centre Canada
TECHNICAL NOTE
CRC-TN-2005-001

January 2005

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JAN 2005 2. REPORT TYPE

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
A Multi-Packet Signature Approach to Passive Operating System
Detection (U)

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Defence R&D Canada -Ottawa,3701 Carling Ave,Ottawa
Ontario,CA,K1A 0Z4

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT
Remote operating system discovery can provide valuable contextual information regarding the computers
connected to the network. In particular, operating system discovery can help identify potential vulnerable
computers or may help prioritize alarms and responses in times of attack. The Network Security Research
Group at the Communication Research Centre (CRC) has developed novel techniques for passive
operating system discovery. The methodology developed allows derivation of a signature from a set of
packets. The tests are conducted passively on regular traffic. They are non-intrusive and do not rely on
access to application or user data. Because they are passive, the techniques do not consume bandwidth and
do not disrupt network assets. Over a dozen tests have been developed to analyse headers of packets seen
on a network. The tests are conducted on headers of various types of protocols: ARP, IP, ICMP, UDP and
TCP. This document describes the tests in detail. They have been implemented in a prototype written in
JAVA, which includes a database containing the "fingerprints" of almost 200 versions of operating
systems. The prototype was used to collect these signatures from our testbed and was also used on real user
traffic for preliminary evaluation of the tests’ performance.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

182

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

A Multi-Packet Signature Approach to
Passive Operating System Detection

Annie De Montigny-Leboeuf
Communications Research Centre Canada

The work described in this document was sponsored by the Department of National Defence
under the Work Unit 15bf

Defence R&D Canada – Ottawa
Technical Memorandum
DRDC Ottawa TM 2005-018

Communications Research Centre Canada
Technical Note
CRC-TN-2005-001
January 2005

© Her Majesty the Queen as represented by the Minister of National Defence, 2005

© Sa majesté la reine, représentée par le ministre de la Défense nationale, 2005

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 i

Abstract

Remote operating system discovery can provide valuable contextual information
regarding the computers connected to the network. In particular, operating system
discovery can help identify potential vulnerable computers or may help prioritize
alarms and responses in times of attack. The Network Security Research Group at the
Communication Research Centre (CRC) has developed novel techniques for passive
operating system discovery. The methodology developed allows derivation of a
signature from a set of packets. The tests are conducted passively on regular traffic.
They are non-intrusive and do not rely on access to application or user data. Because
they are passive, the techniques do not consume bandwidth and do not disrupt network
assets. Over a dozen tests have been developed to analyse headers of packets seen on
a network. The tests are conducted on headers of various types of protocols: ARP, IP,
ICMP, UDP and TCP. This document describes the tests in detail. They have been
implemented in a prototype written in JAVA, which includes a database containing the
“fingerprints” of almost 200 versions of operating systems. The prototype was used to
collect these signatures from our testbed and was also used on real user traffic for
preliminary evaluation of the tests’ performance.

Résumé

La capacité de reconnaître à distance les systèmes d’exploitation peut permettre
d’acquérir de l’information contextuelle et précieuse à propos des ordinateurs
connectés à un réseau. En particulier la reconnaissance des systèmes d’exploitation
peut permettre d’identifier des ordinateurs potentiellement vulnérables ou peut
contribuer à prioriser les alarmes et les réactions en cas d’attaques. Le groupe de
recherche en sécurité des réseaux au Centre de recherche sur les communications
(CRC) a développé de nouvelles techniques pour la reconnaissance passive des
systèmes d’exploitation. La méthodologie développée permet d’établir des signatures
s’étalant sur plusieurs paquets. Les tests reposent sur des techniques passives et non-
intrusives d’analyse de trafic régulier. L’accès aux données provenant des applications
et des usagers n’est pas requis. Les techniques étant passives, elles ne consomment
pas de bande passante et ne perturbent pas les composantes du réseau. Plus d’une
douzaine de tests ont été conçus pour analyser les entêtes des paquets circulant sur le
réseau. Les protocoles dont les entêtes sont examinées sont: ARP, IP, ICMP, UDP et
TCP. Ce document décrit en détail les différents tests développés. Ces tests ont été
implémentés dans un prototype, écrit en JAVA, qui contient une base de données
comprenant les «empreintes» de près de 200 versions de systèmes d’exploitation. Le
prototype a permis de recueillir ces signatures sur un réseau de test ainsi qu’à évaluer
les différents tests avec du trafic d’usagers véritables.

ii DRDC Ottawa TM 2005-018 / CRC-TN-2005-001

This page intentionally left blank.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 iii

Executive summary

A tool that has the ability to identify the operating system (OS) version of computers
connected to a network is useful to both network managers and security analysts
charged with protecting the network. An operating system identification tool can
provide significant contextual information, and is even more valuable if the tool itself
doesn’t disrupt network traffic and can’t normally be detected.

The Network Security Research Group at the Communication Research Centre (CRC)
has developed a series of tests for passively detecting operating systems, and has
implemented a prototype software tool as a proof of concept. The tool is completely
passive as it does not generate any probe or trigger packets. The approach taken is
based on the analysis of packet headers at the data-link, network, and transport layers,
thus the tool does not rely on access to application data. The methodology goes
beyond individual packet analysis commonly used in open source and commercial
operating system identification tools. Because certain packets have influence on
subsequent packets, some information can only be gained when related packets are
analysed together. The uniqueness of this approach is in the use of lightweight state-
aware mechanisms to derive signatures from multiple packets. Over a dozen tests
have been developed to analyse headers of packets seen on a network. The tests are
conducted on headers of various types of protocols: ARP, IP, ICMP, UDP, and TCP.
A number of these tests are adaptations of active techniques, i.e. techniques that
normally require a form of interaction.

The passive OS detection tool was programmed in Java and is one of a set of tools
developed by the team for network monitoring and analysis. It includes a database
containing the signatures of close to 200 versions of operating systems among the
most popular OS families (Linux, SunOS, MacOS, Windows, FreeBSD, OpenBSD,
NetBSD, Novell, BeOS, and QNX). When a test produces a signature that cannot be
found in the database, a mechanism to look for an alternative signature is called upon.
A module manages the information coming from all the tests and attempts to identify
the set of possible operating systems on which the individual tests agree.

The prototype includes automated learning capabilities, verification capabilities, and a
regular mode of operation during which the tool performs passive OS detection on live
traffic or pre-recorded traffic traces.

The signatures contained in the database were obtained using the tool in a controlled
environment. Target operating systems were installed and queried methodically in the
local testbed and the prototype was used to collect and store the signatures observed.
This helped achieving control and uniformity during the capture process.

This document describes the OS identification techniques implemented in the tool, the
signature collection process, and some preliminary results obtained on real user traffic.
The key elements of these signatures are described in detail in the core document and
the signatures for all tests are provided in Annex. Some operating systems have very

iv DRDC Ottawa TM 2005-018 / CRC-TN-2005-001

distinct signatures that allow the prototype to recognize them easily, but in many cases
it is the combination of the tests that leads to a small subset of possible guess. Some
peculiar behaviour has been observed during this study, not all of which could be
thoroughly tested. The testing process and prototype itself would benefit from a
number of modifications and extensions. While little resource at this time is being put
on enhancing the program, the signature database is being updated as new operating
systems are released. The prototype is in a stage where it is considered a proof of
concepts. The tool works as a standalone application and was also integrated into in-
house information gathering tools. The concepts are being considered to complement
a Scenario-Driven Intrusion Detection System under development within the team.

A. De Montigny-Leboeuf. 2004. A Multi-Packet Signature Approach to Passive
Operating System Detection. DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001.
Communications Research Centre Canada. Defence R&D Canada - Ottawa

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 v

Sommaire

Un outil qui a la capacité d'identifier la version du système d'exploitation (SE) des
ordinateurs reliés à un réseau est utile aux administrateurs de réseau ainsi qu’aux
analystes de sécurité responsables de la protection du réseau. Un tel outil peut fournir
de l’information contextuelle, et est davantage utile s’il ne perturbe pas le trafic de
réseau et ne peut être détecté. Le groupe de recherche en sécurité des réseaux au
centre de recherche sur les communications (CRC) du Canada a développé une série
de tests pour détecter passivement les systèmes d’exploitation. Le groupe a développé
un prototype pour valider le concept. L'outil est complètement passif car il ne produit
aucun trafic pour sonder le réseau. L'approche adoptée est basée sur l'analyse des en-
têtes de paquets aux niveaux des couches de liaison de données, de réseau, et de
transport. L'outil ne nécessite donc pas l’accès aux données d'applications. La
méthode dépasse l'analyse individuelle des paquets, méthode d'identification passive
des systèmes d’exploitation généralement utilisée dans les logiciels libres (« open
source ») et commerciaux. Or, puisque certains paquets transmis ont de l'influence sur
les paquets ultérieurs, certaines informations ne peuvent être obtenues qu’en analysant
les paquets ensemble. La particularité de l’approche adoptée est dans l'utilisation de
mécanismes simples mais capable de dériver des signatures s’étendant sur plusieurs
paquets. Un peu plus d'une douzaine de tests ont été développés pour analyser les en-
têtes des paquets circulant sur un réseau. Les tests sont effectués sur divers types d'en-
têtes de protocole : ARP, IP, ICMP, UDP, et TCP. Un nombre de ces tests sont des
adaptations de techniques actives, c’est-à-dire qui requièrent normalement une forme
d’interaction.

L'outil passif de détection de SE a été programmé en Java et fait partie d'un ensemble
d'outils développés par l'équipe pour la surveillance et l'analyse de réseau. Il inclut
une base de données contenant les signatures de près de 200 versions de système
d’exploitation parmi les familles les plus populaires (Linux, SunOS, MacOS,
Windows, FreeBSD, OpenBSD, NetBSD, Novell, BeOS, et QNX). Quand un test
produit une signature qui ne peut pas être trouvée dans la base de données, un
mécanisme pour rechercher une signature alternative est appelé. Un module contrôle
l'information venant de tous les tests et essaye d'identifier l'ensemble des systèmes
d’exploitation possibles sur lequel les différents tests sont en accord.

Le prototype inclut une capacité d’apprentissage automatisé, de vérification, ainsi
qu’un mode de fonctionnement régulier permettant la détection passive de SE en direct
ou sur des traces de trafic pré-enregistrées. Les signatures contenues dans la base de
données ont été obtenues à l'aide de l'outil dans un environnement contrôlé. Les
systèmes d’exploitation ont été installés et testés méthodiquement dans le banc d'essai
et le prototype a été employé pour recueillir et stocker les signatures. Ceci a aidé à
maintenir un niveau de control et d'uniformité au cours du processus de collection des
signatures.

vi DRDC Ottawa TM 2005-018 / CRC-TN-2005-001

Ce document décrit les techniques d’identification de systèmes d’exploitations
développées au cours de ce travail, le processus de collection des signatures, et
quelques résultats préliminaires obtenus à partir de trafic d’usagers réels. Les
éléments clés de ces signatures sont décrits en détail dans le coeur du document et les
signatures pour tous les tests sont fournies en annexe. Quelques systèmes ont des
signatures très distinctes qui permettent au prototype d’identifier facilement leurs
systèmes d’exploitation, mais dans beaucoup de cas, c'est la combinaison des tests qui
mène à un petit sous-ensemble de possibilités. Nous avons observé durant cette étude
quelques comportements particuliers, certains d’entre eux n’ont pu être examinés de
façon exhaustive. Le processus d’évaluation et le prototype lui-même tireraient
bénéfice d'un certain nombre de modifications et d’enrichissements. Tandis que peu
de ressources sont actuellement affectées à l’amélioration du programme, la base de
données des signatures est toutefois mise à jour lorsque de nouveaux systèmes
d’exploitation sont mis en circulation. Le prototype est dans un état validant le
principe. L'outil fonctionne comme application autonome et a également été intégré
dans des outils développés à l’interne pour la surveillance et l'analyse de réseau.
L’équipe est présentement à considérer l’applicabilité des principes utilisés pour
détecter les systèmes d’exploitation pour complémenter un système de détection
d'intrusion fondé sur des scénarios.

A. De Montigny-Leboeuf. 2004. A Multi-Packet Signature Approach to Passive
Operating System Detection. DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001.
Centre de recherche sur les communications Canada. R & D pour la défense Canada - Ottawa

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 vii

Table of contents

Abstract..i

Executive summary..iii

Sommaire .. v

Table of contents...vii

List of figures..x

Acknowledgements...xii

1. Introduction..1

2. Background..3

2.1 Active Fingerprinting Techniques ..3

2.2 Passive Fingerprinting Techniques...5

2.3 Header fields used in fingerprinting ...6

2.3.1 IP Don’t Fragment bit ..6

2.3.2 IP Time-To-Live ..6

2.3.3 IP Service Type..7

2.3.4 IP Identification ...7

2.3.5 ARP Target Hardware address ..8

2.3.6 ICMP code ...8

2.3.7 ICMP Identifier and ICMP Sequence Number....................................9

2.3.8 Data of ICMP Echo messages ...10

2.3.9 Data of ICMP Error messages ...10

2.3.10 TCP Sequence Number..11

2.3.11 TCP Acknowledgment Number...11

2.3.12 TCP Flags ..11

2.3.13 TCP Reserved ..13

2.3.14 TCP Window ...14

2.3.15 TCP Options ..14

viii DRDC Ottawa TM 2005-018 / CRC-TN-2005-001

3. Passives Tests Developed ..19

3.1 Categories of Passive Tests...19

3.1.1 Singleton ..19

3.1.2 Sample ...20

3.1.3 Stimulus-Response ..20

3.2 Tests Descriptions...21

3.2.1 PassiveTest_TCP_SYN (Singleton) ..21

3.2.2 PassiveTest_ARP_Request (Singleton) ...22

3.2.3 PassiveTest_TCP_ISN (Sample) ...23

3.2.4 PassiveTest_IP_ID (Sample) ...26

3.2.5 PassiveTest_TCP_TS (Sample)...30

3.2.6 PassiveTest_ARP_Retransmit (Sample)..32

3.2.7 PassiveTest_ICMP_ID_SEQ (Sample) ...33

3.2.8 PassiveTest_TCP_SYNACK (Stimulus-Response)37

3.2.9 PassiveTest_TCP_RSTACK (Stimulus-Response)39

3.2.10 PassiveTest_ICMP_Unreach (Stimulus-Response)...........................40

3.2.11 PassiveTest_ICMP_Echo (Stimulus-Response)41

3.2.12 PassiveTest_ICMP_Info (Stimulus-Response)..................................43

3.2.13 PassiveTest_ICMP_TS (Stimulus-Response)....................................44

3.2.14 PassiveTest_ICMP_Mask (Stimulus-Response)45

4. Collecting the signatures..47

4.1 Computer Network Testbed..47

4.2 Stimulation Procedures and Traffic Capture...51

4.2.1 PassiveTest_TCP_SYN ...52

4.2.2 PassiveTest_TCP_ISN...52

4.2.3 PassiveTest_IP_ID...53

4.2.4 PassiveTest_TCP_TS ..53

4.2.5 PassiveTest_ICMP_ID_SEQ...53

4.2.6 PassiveTest_ARP_Request and PassiveTest_ARP_Retransmit54

4.2.7 PassiveTest_TCP_SYNACK and PassiveTest_TCP_RSTACK54

4.2.8 PassiveTest_ICMP_Unreach/Echo/Info/TS/Mask55

5. Field Test Evaluation ...56

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 ix

6. Development State of the Prototype ..70

7. Limitations and Future Work...74

7.1 Limitations..74

7.1.1 Fingerprinting countermeasures ..74

7.1.2 Network Conditions and Configuration...75

7.2 Future Work..76

8. Conclusion ...78

References...85

Annex A: Collected Signatures...88

Annex B: Active OS identification tools: Analysis of Nmap and Xprobe143

OS scan with Nmap ...143

Description of tests T1-T7 ..144

Description of the PU test ...146

Description of test Tseq ..148

General Remarks on OS differences...151

OS scan with Xprobe ...152

Description of tests based on the UDP packet ..152

ICMP Echo Request packet ..153

ICMP Timestamp Request..154

ICMP Information Request...154

ICMP Address Mask Request...154

General Remarks on OS differences...154

Graphical representation of Xprobe’s logic tree...154

List of symbols/abbreviations/acronyms/initialisms...160

Glossary ..161

x DRDC Ottawa TM 2005-018 / CRC-TN-2005-001

List of figures

Figure 1. Limitation due to the position of the monitor when doing sequencing analysis24

Figure 2. Testbed from which the signatures were collected..48

Figure 3. Test selection menu ...71

Figure 4. CRC’ s Active Network Mapping Tool GUI...72

Figure 5. CRC’ s Passive Network Monitoring Tool GUI ...73

List of tables

Table 1. Typical Maximum Transmission Units (MTUs) ..15

Table 2. Tested Operating Systems ..49

Table 3. Tested Operating system: Linux distribution..50

Table 4. Stimuli used to collect SYN/ACK and RST/ACK signatures54

Table 5. Traffic Trace #1 ..56

Table 6. Traffic Trace #2 ..57

Table 7. Results of individual tests ...59

Table 8. Tests Parameters ...60

Table 9. Results obtained from Traffic Trace #1 for each host ..62

Table 10. Results obtained from Traffic Trace #2 for each host ..65

Table 11. Comments on each test ...80

Table 12. PassiveTest_TCP_SYN ..88

Table 13. PassiveTest_ARPRequest ...89

Table 14. PassiveTest_TCP_ISN..91

Table 15. PassiveTest_Echo_IP_ID (Subtest of PassiveTest_IP_ID)95

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 xi

Table 16. PassiveTest_NULL_IP_ID (Subtest of PassiveTest_IP_ID)95

Table 17. PassiveTest_IP_ID..100

Table 18. PassiveTest_TCP_TS..104

Table 19. PassiveTest_ARPRetransmit ..105

Table 20. PassiveTest_TCP_SYNACK..107

Table 21. PassiveTest_TCP_RSTACK ..127

Table 22. PassiveTest_ICMP_Unreach ..130

Table 23. PassiveTest_ICMP_Echo..134

Table 24. PassiveTest_ICMP_Info ...135

Table 25. PassiveTest_ICMP_TS ...136

Table 26. PassiveTest_ICMP_Mask...137

Table 27. PassiveTest_ICMP_ID_SEQ ..138

Table 28. PassiveTest_ICMP_ID (Subtest of PassiveTest_ICMP_ID_SEQ).........................140

Table 29. PassiveTest_ICMP_SEQ (Subtest of PassiveTest_ICMP_ID_SEQ)142

xii DRDC Ottawa TM 2005-018 / CRC-TN-2005-001

Acknowledgements

This work was conducted at the Communications Research Centre Canada (CRC) and
was partially funded by Defence R&D Canada (DRDC), National Defence. The
author would like to thank her co-workers, Frédéric Massicotte, Denis Fournier, and
Daniel Tremblay and also the co-op students who came to CRC during the years
2001/2002 for their tremendous contribution in the development of the prototype.
Thanks to the people of the Information Networks and Systems (DINFO) team at
CRC, in particular Peter Corrigan, for their help in collecting data for a field trial. The
author would also like to thank Joanne Treurniet from DRDC for testing some of the
techniques on a different data set. Thanks also to Tim Symchych and Frédéric
Massicotte from CRC for their advice and support during the writing of this document.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 1

1. Introduction

The ability to remotely identify a target operating system (OS) and version is a definite
advantage when trying to identify vulnerabilities in networked systems. For this
reason, there has been a lot of effort from the networking community to develop tools
for OS detection, also referred to as OS fingerprinting. It is also an interesting area of
research for network security analysts as it provides significant contextual information
regarding the components connected to a network. Network administrators should be
able to fingerprint machines under their control. OS discovery can help identify
possibly vulnerable hosts connected to the network being protected. It can also help
address the problem of false-positives from Network Intrusion Detection Systems
(NIDS).

Traditional network security devices such as NIDS, firewalls, and security scanners
usually operate independently of one another, with virtually no knowledge of the
network assets they are defending. This lack of information can result in ambiguities
when interpreting alerts and making decisions on adequate responses. Even with
increased accuracy of security devices, network security analysts still must sort
through a tremendous number of potential security events. OS identification can
provide timely significant information about the components referenced by the alarm.
This contextual knowledge can help reduce the rate of false positive alarms. Several
attacks have distinctive signatures based on port numbers and data content and can
thereby be detected by traditional NIDS. The NIDS are however likely to raise false
alarms if an attack is randomly targeting several computers. Many of the targeted
systems may not be vulnerable to this attack. To allow network administrators focus
their attention on vulnerable targeted systems, an alert generated for a computer
running a non-vulnerable OS should get a low priority. When attacks do occur or
when a known virus is spreading, the OS information can be used to ensure that human
resources are not wasted chasing down false positives.

Based on observations made during the analysis of several passive and active OS
detection tools, we have developed a series of tests for detecting operating systems
passively. Some of these are based on novel ideas; several others are adaptation of
techniques that are normally conducted actively by other OS fingerprinting tools. We
confine the analysis to headers at the data-link, network, and transport layers to avoid
relying on access to application data. Tests are conducted on the headers of different
kinds of protocols: ARP, IP, ICMP, UDP and TCP. The methodology goes beyond
individual packet analysis. Stimulus and response packets are identified, paired, and
are evaluated together to allow for more accuracy. Our method also allows for
analyzing samples of packets transmitted by a computer (typically to observe how a
certain header field evolves). We have developed a prototype based on these adapted
techniques and built a database containing the fingerprints of almost 200 versions of
operating systems.

The remainder of the document is structured as follows: the background section
(section 2) covers the essential concepts of OS fingerprinting. It discusses other

2 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

related works and contains a detail description of the fields that can be used for
detecting OSes. Section 3 describes the three categories of passive tests developed
(Singleton, Sample, Stimulus-Response). It then provides technical details for each of
the fourteen individual tests. Section 4 describes the process used for collecting the
signatures from the testbed network and section 5 describes preliminary results
obtained on a corporate network.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 3

2. Background

Fingerprinting methods can be broadly classified into two categories: active and
passive. The term active refers to methods that inject traffic into the network. These
methods typically consist of sending carefully chosen test packets and observing the
reaction they stimulate. In contrast, passive techniques observe existing traffic without
disturbing the networking environment, and are therefore less intrusive. Typically,
passive methods consist of analysing traffic traces captured using a packet filter utility
such as tcpdump[1]. Whether the methods are active or passive, OS fingerprinting is
based on the principle that there are differences in the implementation of the network
protocols (often called networking stacks) among various operating systems.

2.1 Active Fingerprinting Techniques

The differences among the networking stack implementations are especially noticeable
when it comes to handling non standard (or abnormal) packets. To detect these
differences, one can send a carefully crafted packet (a stimulus) to a target and analyse
the behaviour it provoked. Note that the target’s behaviour could be to not respond at
all.

Some tools such as ring[2] or Induce-ARP[3] use techniques based on the
retransmission behaviour of their target. Ring works at the TCP level and was
developed by the Intranode Research Team. It stimulates its target with a SYN packet
sent to an open port, when it receives a SYN/ACK response from its target, instead of
completing the normal TCP three way handshake by sending an ACK packet back, it
remains quiet. It is at this point that the targets will respond differently according to
their TCP stack implementation. Some will give up on the communication right away,
others, believing a packet loss has occurred, will retransmit the SYN/ACK packet.
Since this packet will also remain unanswered, some targets will retransmit again, and
so forth until they finally give up. Ring detects what operating system the target is
running based on the number of retries and the delays between them. The current
version has a limited number of signatures, but OSes do seem to be distinguishable
according to this technique. For example, Windows 98 sends 3 retransmissions,
waiting 3 seconds before sending the first retransmission, then 6 and 12 seconds
between the other two. Windows 2000 behaves similarly but stops after the first two
retransmissions. Not all OSes double the delays between retransmissions, and some
send much more than three. The reader can refer to the document [2] describing ring
for more details.

The principle behind Induce-ARP is similar but operates at the Address Resolution
Protocol (ARP) level. The user of the tool must be connected to the same “ARP-
utilising” link layer (e.g. Ethernet, FDDI) as its target. Computers connected to such
networks can communicate with one another provided they have their peer’s IP and
hardware addresses. ARP requests are issued each time a host needs to obtain the
hardware address (also known as the MAC address) associated with an IP address.

4 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

Induce-ARP stimulates its target using an ICMP echo Request with a spoofed1,
unused2, source IP address. Upon reception of the forged packet, the target broadcasts
an ARP request, querying for the MAC address associated with the IP address it thinks
it was probed from. But because this IP address is unused, the ARP request remains
unanswered. This leads to two situations, either the target gives up on this
communication, or it reissues the ARP request. While most operating systems give up
after the first attempt, some OSes such as Solaris and Linux can be fingerprinted using
this technique, as they do send a few retransmissions. Solaris tries 6 times with a 1
second delay between each retransmission, while Linux tries 3 times waiting 1 second
between each attempt. An attractive aspect of this technique is that ARP requests to
nonexistent IP address are likely to be seen as part of regular traffic. For example, this
happens when a user tries to communicate with a temporarily down machine, or when
a user simply mistypes the IP address he or she is trying to reach. Note however that
any identification based on delays may be unreliable due to network congestion.

Other tools go deeper in the packets they receive from their target to see how header
fields have been set. This often leads to more precise OS detection. Nmap[4], a
popular port-scanning tool, has been equipped with active OS detection capabilities for
some times now. The tool is still being actively enhanced and the fingerprint database
for its OS tests is quite impressive. It contains fingerprints for the most to the least
popular OSes one can have access to, and the results often pinpoint the version quite
precisely. The fingerprinting approach was inspired by an earlier tool named
queSO[5]. One problem with nmap is that it generates a lot of traffic and some of its
stimuli contain abnormal settings that can trigger alarms from intrusion detection
systems (IDS). Nonetheless, reviewing the techniques used by the tool and their
results is quite instructive. Fyodor, the author of nmap, has produced an introductory
paper [4] on TCP/IP stack fingerprinting which first appeared in the Phrack e-zine
(issue 54 article 9). Several passive tests developed during this project were inspired
by nmap. For reference purposes, the techniques used by this tool are summarized in
Annex B.

While nmap mainly focuses on differences in the TCP protocol implementations,
another OS detection tool, xprobe[6], achieves good accuracy using the ICMP
protocol. Xprobe’s project is fairly recent and the variety of tested operating systems
is a little constrained. On the other hand, the number of packets required to fingerprint
a target is smaller, and the packets used are likely to appear on a daily basis as part of
regular network traffic. Xprobe is therefore stealthier. Its author, Ofir Arkin, has
produce documents[6][7] on the techniques used and observations made regarding the
differences among the ICMP protocol implementations. An overview of xprobe is
provided in Annex B.

1 “Spoofing” means forging the sender’s identity so that the packet appears as coming
from somebody else.
2 By the term “unused”, we mean that no host connected to the network at the time of
probing is configured with this IP address. For the test to work, the spoofed IP address
must be unused, and within the subnet range of the other two parties (the target, and the
host running the tool).

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 5

2.2 Passive Fingerprinting Techniques

Instead of probing the target with crafted packets as active techniques do, passive
techniques capture packets flowing on the network and inspect their content. The
packet capturing process does not disturb the communications; it simply “listens” for
them. Passive techniques typically listen for special kinds of packets and then inspect
how header field values have been set. One must keep in mind that some parameters
vary depending on the state of the connection. For example, the window size field in a
TCP packet advertises the number of bytes the host is prepared to receive in its buffer
space. While OSes tend to start with their own default value at the TCP connection
set-up, the window size is very likely to change throughout a session as packets are
transmitted and processed. This means that depending on the fields examined, not all
packets of a connection may be suitable for analysis.

In the summer of 1999, a person with the online name “photon” posted a message to
the nmap-hackers mailing list [8] in which he described some ideas for doing passive
OS fingerprinting. The thought of doing OS detection without disturbing
communications, or from another point of view, without being detected, is very
attractive and several lines of research have been active since then.

For example, Michal Zalewski has developed a tool called p0f[9] that was initially
listening for SYN packets (the tool has since evolved to examined a few other types of
packets). Another tool, which includes a passive OS detection functionality along with
several other network mapping capabilities, is ettercap[10]. When running in passive
mode, ettercap captures either SYN or SYN/ACK packets to identify the OS. While a
SYN and a SYN/ACK packet are related, they are inspected by ettercap independently.
Some care should be taken when interpreting the results ettercap and p0f produce
based on SYN/ACK packets, as some of the fields these tools examine depend on what
had been sent in the SYN packet. To the best of our knowledge, no currently available
tools take this into account.

Jose Nazario[11] from Crime Labs Research has written a paper on passive
fingerprinting using network client applications. The technique he describes consists
of looking at the application layer, seeking special strings that could identify the
operating system. Telnet and FTP banners for instance often state in clear text the OS
that the server is running. Some applications also involve option negotiation prior to
exchanging any data, and because applications are often platform dependent, this can
sometimes be used in OS fingerprinting. While information obtained in this manner
can be quite precise3, these techniques rely on the availability of the data at the
application layer. This limits the applicability of the techniques. For example, the

3 Masquerading can however be relatively easy at the applications layer using third
party tools or simply by modifying the properties. Fields like HTTP User-Agent and
X-Mailer are not even mandatory. The content of such fields can be overwritten
without affecting the communication. In the same train of thought, “Banners” are
systematically rewritten nowadays by system administrators. Obfuscation and
masquerading at the network and transport layers are also feasible, but care must be
taken not to break connectivity.

6 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

application layer may be encrypted, as it is the case with the Secure Shell (SSH) and
the Secure Sockets Layer (SSL) protocols. Another limitation of an application layer
packet analysis approach is when the application data in each packet is removed at the
time of capture. Depending on the organisation’s policy, this may be done for privacy
issues4. Limiting the capture length of packet is also a common practice when storage
capacity is in place to allow for post analysis of traffic traces. Nonetheless, the
techniques presented in [11] are simple to implement and can produce reasonably
accurate results.

2.3 Header fields used in fingerprinting

This section enumerates the primary fields contained in IP, TCP, ARP, and ICMP
headers that can be used for detecting OSes. These protocols belong to the IPv4
protocol suite, which is the focus of this work. For each field, we give a brief
description of its intended purpose, and then we describe how it can be used in OS
fingerprinting.

2.3.1 IP Don’t Fragment bit

Setting the IP “don’t Fragment” (DF) to 1 instead of 0 specifies that the IP
datagram should not be fragmented. Many operating systems set the DF bit
by default in some of the packets they send. For example, a lot of systems
have this bit set in datagrams carrying TCP segments with the SYN flag on.
However, even then, there are some differences: before setting the DF bit,
some implementations ensure that “only” the SYN flag is set, while some
others check that “at least” the SYN flag is set. This means that some
systems have the DF bit set in SYN but not in SYN/ACK packets, and some
others have it set in both SYN and SYN/ACK packets. There are several
other kinds of packets for which the DF bit is set differently by OSes.

2.3.2 IP Time-To-Live

The IP “Time-To-Live” (TTL) field sets an upper limit on the number of
routers a packet can pass through. This prevents a packet from getting caught
in routing loops. The value is initialised by the sender, and decremented by
one by every router that processes the packet. The initial value varies
depending on the Operating system. Moreover, some OSes use different
values depending on the type of packet they send. For example BSD-like
systems use a value of 64 in a datagram carrying a TCP segment, and a value
of 255 in an ICMP message. From experiments conducted on our testbed, we
were also able to observe that, in special cases, some OSes echo the TTL
value they receive instead of using their own default value. This happens
with some Solaris, Mac OS, and Novell versions for instance.

4 It is at this layer, for example, that one finds login names, passwords, or e-mail
messages.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 7

2.3.3 IP Service Type

The 8-bit long IP Service Type as described in RFC 1349[12] consists of
three fields. The first field, “Precedence” is 3-bit long and is intended to
prioritise the IP datagram. The second field, “Type-of-Service” (TOS), is 4-
bit long and is intended to describe how the network should make tradeoffs
between throughput, delay, reliability, and monetary cost. The last field,
“Must-Be-Zero” (MBZ), is only one bit long and is unused. The settings of
the TOS bits can be chosen at the application level. Therefore, if the specifics
of the application layer protocol are not considered, relying on the TOS field
when doing OS fingerprinting can be misleading. The xprobe OS
fingerprinting tool takes the TOS field into account because some systems set
the Precedence bits to a special default value when sending an ICMP error
message.

The whole octet is now being replaced by the Differentiated Services
mechanism for Quality of Service. As specified by RFC 2474[13] and RFC
3168[14], it consists of two fields: the first 6 bits make the “Differentiated
Services Codepoint” (DSCP), and the last two bits describe the “Explicit
Congestion Notification” (ECN) field at the IP level. The key point is that
with Differentiated Services mechanisms, this octet is no longer the sole
concern of the two end-points only: intermediate routers handling the packet
may change the setting. This limits even more the reliability of this field
when fingerprinting end-point systems.

2.3.4 IP Identification

The IP “Identification” (ID) field uniquely identifies each IP datagram sent by
a host. It plays an important role in the reassembly of fragmented datagrams.
A guideline in RFC 791[15] indicates that the upper layer that is having the
IP layer send the datagram should choose the value. This implies that two
different IP datagrams, one carrying TCP and one carrying UDP, can have the
same identification field. Note that while this doesn’t cause any reassembly
problem, most operating systems have the IP layer increment a kernel
variable each time an IP datagram is sent, regardless of the upper layer.
Therefore, in most cases the IP identification field is incremented by one each
time the system sends a new datagram. Linux kernels 2.4.x are counter-
examples to this simple incremental behaviour. In addition to zeroing out the
IP ID value of some special packets, these systems maintain separate counters
for different connections. Solaris and Mac OS prior to Mac OS X also use
separate counters, one per destination address (independently from the
protocol and the port numbers). Recent versions of OpenBSD (2.5 and above)
use a pseudo-random generator for the IP ID of each IP datagram. Some
other systems such as Windows 95 have a monotonically-increasing

8 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

behaviour, but instead of incrementing the field by 1 (or 0x0001 in
hexadecimal), they increment it by 256 (or 0x0100 in hexadecimal). This is
due to a byte order mishandling (they do not bother putting the counter into
network (big-endian) byte ordering. For example, the IP ID following
0x1234 will be 0x1334, not 0x1235. Nmap is the first tool we have seen that
analyses the IP ID incremental behaviour of its target when doing OS
fingerprinting. It does not have, however, a category for OSes that use
session dependent counters.

2.3.5 ARP Target Hardware address

The ARP protocol allows a host to ask for the physical address of another
host connected to the same physical network, given only the IP address of this
other host. The headers of an ARP request and an ARP reply have the same
format. Among other fields, there is one (named Operation) that identifies
whether it is a Request or a Reply, and four fields to bind IP addresses to
Physical addresses. These four fields are the Source Hardware address, the
Source IP address, the Target Hardware address, and the Target IP address.
When a host sends a request, it fills the Source Hardware address and the
Source IP address with his own, and also supplies the Target IP address for
which it is requesting the physical address. Before the target replies, it fills
the missing address (Target Hardware address), swaps the target and sender
pairs of addresses, and changes the operation code to “reply”.

We observed that when sending the request, the content of the “blank field”
(Target Hardware address) varies with operating systems. Some initialise it
with 0x000000000000, others fill it with 0xffffffffffff. Moreover, some
versions of FreeBSD forgot to initialise the field and so it contains allocated
memory garbage.

2.3.6 ICMP code

The Internet Control Message Protocol (ICMP) assists TCP/IP
communications by providing a mechanism to handle errors and control
messages. ICMP headers have a code field that accompanies the type field.
Together, they describe the purpose of an ICMP message. For example, an
ICMP message with type 3, code 2, is a Destination Protocol Unreachable
message. If type is still 3 but code is 3, it is a Destination Port Unreachable
message. For some types of ICMP messages, the code field is meaningless
(the purpose of the message is defined by the type field on its own). This is
the case for ICMP Echo messages that are used to determine whether a
machine is alive (i.e. reachable and responding) on the network. The ICMP
Echo request message is of type 8, and the response (ICMP Echo Reply) is of
type 0. While RFC 792[16] guidelines are to set the code value to zero in

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 9

both cases (the request and the response), the construction of the Echo Reply
message is described as follows:

“To form an echo reply message, the source and destination
addresses are simply reversed, the type field changed to 0,
and the checksum recomputed.”

That is, the RFC does not mention how to handle the code field.

Windows family systems can be detected using an active test that sends one
ICMP echo Request. It suffices to set the code field to a nonzero value. In
the response, Windows systems overwrite this value to set the field to zero,
while other systems simply echo the value contained in the Request. This
fingerprint technique is used by xprobe. We also noticed from experiments in
the testbed that some OSes do not respond to ICMP echo Request when the
ICMP code of is nonzero.

2.3.7 ICMP Identifier and ICMP Sequence Number

ICMP Echo Request/Reply messages contain two header fields to aid in
matching the replies with the requests. They are named Identifier and
Sequence Number. As quoted from RFC 792:

“The identifier and sequence number may be used by the
echo sender to aid in matching the replies with the echo
requests. For example, the identifier might be used like a
port in TCP or UDP to identify a session, and the sequence
number might be incremented on each echo request sent.
The echoer returns these same values in the echo reply.”

The ping utility is included with most platforms to allow testing for TCP/IP
connectivity. It uses Echo Requests datagram to elicit ICMP Echo Responses
from a host or gateway. There exist differences among ping implementations
in the setting of the ICMP Identifier and ICMP Sequence Number parameters.
Most implementations use the Identifier to identify Echo Requests aimed at
different destination addresses, and use the Sequence Number to identify
Echo Requests when multiple requests are sent to the same destination
address. This generally leads to the following behaviour: When the ping
application sends n echo requests to a given destination address, the ICMP
Identifier is fixed to a certain value and the Sequence Number is incremented
n times, starting at zero. Next time ping is called, it will choose a new ICMP
Identifier and reset the Sequence Number to zero. Ping utilities based on this
behaviour still show some differences depending on the flavour. The ICMP
Sequence Number is sometimes incremented by 0x0001, and sometimes by
0x0100. Some use the Process ID (PID) as their ICMP Identifier for each call
of the application.

10 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

The ping utility in Windows systems has a different behaviour than the one
described above. They use a constant value for the ICMP Identifier in all of
the ICMP Echo requests, and a global counter for the ICMP Sequence
Number. For example, the constant ICMP Identifier value is 0x0200 for
Windows 98/2000/XP, 0x0100 for Windows 95/NT, and 0x0300 for
Windows Me. The Windows ICMP Sequence Number counter is global in
the sense that it starts at 0x0100 when the first ICMP Echo Request is issued
after a reboot (or when the value reaches its maximum 16-bits value), and is
then incremented by 0x0100 for any subsequent ICMP Echo Request sent.
While [7] describes observed behaviour of the ICMP Identifier and the ICMP
Sequence Number, we have not seen any OS fingerprinting tool that listens
for ICMP Echo Requests to infer the OS based on how these two fields are
set.

2.3.8 Data of ICMP Echo messages

Adding data into the ICMP Echo Requests allows detection of data-dependent
transmission problems that may occur along the path. RFC 792 specifies that
the data received in the echo request must be returned in the echo reply
message. It does not specify how much data should be sent, or what the data
should be. Most ping utilities allow the user to choose a pattern to transmit.
If the option is not used, the ping utility sends its own default data. This data
typically includes a fixed portion identical in all Echo Requests the ping
utility transmits. Windows’s ping utility sends 32 bytes of data identical in
each echo requests. The Unix-based ping utility sends 56 bytes of data, the
last 48 bytes are fixed and the first 8 bytes consist of a timestamp used for the
calculation of the round trip (see the man page of ping for more details).
Novell’s ping utility sends 12 bytes, of which only the last two are fixed. By
examining the length and content of the ICMP data, one can define a test that
passively tries to identify the ping utility used, which in turn can be
associated with a given OS.

2.3.9 Data of ICMP Error messages

There are several types of ICMP messages that are defined to report an error
in the processing of a datagram. Examples of such ICMP error messages are
Destination Unreachable (ICMP type 3), Source Quench (ICMP type 4),
Redirect (ICMP type 5), Time Exceeded (ICMP type 11), and Parameter
problem (ICMP type 12). These messages are delivered to the sender of the
packet that generated the error. They carry the IP header and at least the first
64 bits of the next higher header. This is done to help the host that sent the
offending packet to match the error with the appropriate process. If the
protocol above IP uses port numbers, they are assumed to be in the first 64

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 11

data bits of the original datagram's data. Most of the Operating systems will
send back the IP header and the first 64 bits of the next header only. Others
will send more. There are also several OSes that alter the datagram echoed in
the ICMP error message. When this happens, it means that there will be
discrepancies between certain immutable fields5 in the original datagram and
those of the echoed version. Both nmap and xprobe exploit these
particularities to fingerprint their targets by probing an ICMP Port
Unreachable Message (they send a UDP packet to a closed port).

2.3.10 TCP Sequence Number

If we consider the stream of bytes flowing in one direction, the TCP protocol
numbers each byte with a sequence number. The TCP “Sequence number”
field identifies the sequence number of the first byte carried in the packets.
When a new connection is established, the Sequence Number field contains
the Initial Sequence Number (ISN) chosen by the host for this particular
connection. The way the ISN is chosen when establishing a new TCP
connection varies with Operating systems. To the best of our knowledge,
nmap is the first tool that tries to deduce how the ISN numbers are generated
in order to identify the Operating system.

2.3.11 TCP Acknowledgment Number

As mentioned above, every byte of a TCP data stream is numbered. The
“Acknowledgment Number” field gives the next sequence number that the
sender of the acknowledgment expects to receive. Generally, this is equal to
the Sequence Number of the last successfully received byte of data, plus 1.
This field is valid only when the ACK flag is on. When responding to a TCP
segment having abnormal settings, some TCP implementation set the
Acknowledgment Number value differently. Both queSO and nmap verify
the value of this field in the responses they get.

2.3.12 TCP Flags

Some TCP segments carry only an acknowledgment, while some others also
carry data. Some segments are requests to initiate or to terminate a
connection. There are 6 flag bits in the TCP header indicating the “purpose”
of a segment. One or more of them can be turned on at the same time.
Manipulation of TCP flags has been a focal point in many OS fingerprint

5 The immutable fields are those that do not change in transit. This is in contrast with
the TTL and the checksum fields that do change as they are being processed by the
routers along the way.

12 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

experiments. When an unconventional setting is used, it can put the TCP
stack of the target in an “undefined state”, and thus the reaction may differ
depending of the OS. QueSO and nmap use this technique in several of their
tests. Following is a brief description of each TCP flag:

URG

The “Urgent Pointer” flag is used to tell the other end that "urgent data" of
some sort has been placed into the stream of data. When the flag is set to 1, it
validates the value of the “Urgent pointer” field of the TCP header. When it
is set to 0, the “Urgent pointer” field is meaningless and thus typically zeroed
out. The author of p0f mentions that some Windows systems do not always
zero out the “urgent pointer” field although the URG flag equals 0 [9]. We
cannot confirm this allegation since this behaviour has not been seen for any
TCP packets produced by the operating systems tested in the lab. That is, all
TCP packets with URG flag equalled to 0 that we examined also had the
“Urgent pointer” field set to 0.

ACK

The “Acknowledgment” flag indicates that the reception of data is being
acknowledged, and it validates the value of the “Acknowledgment Number”
field.

PSH

The “Push” flag tells the TCP stack of the receiver to pass the data to the
Application layer as soon as possible. This data would consist of whatever is
in the segment with the PUSH flag, along with any other data the receiving
TCP has collected and buffered for the receiving process. It is useful for an
interactive application for example. When a client sends a command to a
server, the client expects its command to be processed rather than to remain
in the TCP buffer waiting for additional data.

RST

The “Reset” flag informs the other side that a connection problem has
occurred. In general, TCP sends a RST after handling a segment that doesn't
appear correct for the referenced connection (connection specified by the
quadruplet: source IP address, destination IP address, source port, and
destination port).

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 13

SYN

The SYN flag is sent in segments that initiate a connection in order to
synchronize the Initial Sequence Numbers each side is starting with. The
SYN flag appears in the first two packets of a connection. Suppose a
communication is about to be established between hosts A and B, and that A
is the “caller”. To initiate the connection, A sends a SYN packet containing
an Initial Sequence Number (ISN) and in which the only flag set is SYN. B
then responds with a SYN/ACK packet (in which both SYN and ACK are set)
informing A of its own ISN, and acknowledging A’s ISN. These are the first
two steps of the “Three Way Handshake” that needs to be completed before
any data is exchange with TCP. The third and last step that completes the
Three Way Handshake is host A sending an ACK to host B in order to
acknowledge the ISN of B.

FIN

The sender of a FIN flag indicates it has finished transmitting data. A
connection typically terminates after both sides have sent a FIN and have
acknowledged the reception of the FIN coming from the other side.

2.3.13 TCP Reserved

As specified by RFC 793, the TCP header contains a 6-bit field reserved for
future use. RFC 3168[14] now describes how the last two bits of this field
can be used for control of congestion (Explicit Congestion Notification). The
two special bits are referred to as “Congestion Window Reduced” (CWR) and
ECN-Echo (ECE) respectively. They are set by the endpoints of a connection
to signify that the endpoints are ECN capable. As proposed by RFC 3168, it
is during the TCP connection set-up phase that the source and destination
informs one another about their desire and/or capability to participate in
Explicit Congestion Notification (ECN). The expected behaviour when both
parties support the ECN capability is the following: the initiator of the
connection turns on the ECN and CWR flags in the SYN packet, and the
receiver responds by setting the ECN flag (but not the CWR flag) in the
SYN/ACK packet. While the ECN capability had been suggested in the past,
it became a proposed standard only recently6, and thus several OSes do not
support this capability by default. Both queSO and nmap use the ECN bits in
one of their tests (the one that sends a SYN packet to an open port). While
queSO’s usage complies with the RFC, nmap’s does not. In either case, the
technique is useful for recognising some OSes.

6 The issue date of the proposed standard RFC 3168 is September 2001. The ECN
mechanism was introduced in RFC 2481 (1999) under the experimental status.

14 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

2.3.14 TCP Window

The TCP “Window” field is used to advertise how many additional bytes of
data the sender of the packet is prepared to accept. This “receive window
space” can be thought as the currently available buffer size. Throughout the
lifetime of the connection, each endpoint informs the other side of its current
value. The value is very likely to change during the connection as data is
received. The default values of socket buffer size available at the beginning
of a connection widely differ between implementations. Older Berkeley-
derived implementations would set a default value to 4KB, but newer systems
use larger values (up to 64KB). These default values can be seen in SYN and
SYN/ACK packets and are widely used in fingerprinting techniques, whether
they are active or passive. For some OSes, the value in these packets is a
multiple of the advertised Maximum Segment Size (MSS) found in the TCP
options (see section 2.3.15).

2.3.15 TCP Options

While IP options are rarely used, TCP options are seen quite frequently. The
space they occupy at the end of the TCP header is of variable length. When
there is no TCP option, the TCP header is exactly 20-byte long. The length of
each option is a multiple of 8 bits (1 byte), and some are as long as 10 bytes.
Not all OSes support the same TCP options, nor do they advertise them in the
same order. Moreover, the values these options take may differ depending on
the operating system. Depending on their purposes and definitions, some
options must only be used with special segments, for example when the SYN
flag is set.

Passive OS detection tools often look at options set in a SYN packet, while
most active tools look at those set in a SYN/ACK packet in response to their
stimulus. The question “What options are supported?” is best answered in the
latter case. This is because some OS support a lot of options, but ask for few.
The rule of thumb is that when a host is queried with a set of options, it
usually shows support of the options it can handle by setting them in the
reply. We describe below some commonly used TCP options.

Maximum Segment Size (MSS)

TCP uses the “Maximum Segment Size” (MSS) option to inform the other
side of the Maximum Transfer Unit (MTU) on his side. Basically, when
initiating the connection, both ends will announce the maximum IP datagram
size that can pass through the link layer they are connected to, without being
fragmented. If connected to an Ethernet cable for instance, the MTU is 1500.
Table 1, borrowed from TCP/IP Illustrated [17], provides a list of typical
underlying technologies with the corresponding MTU.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 15

Table 1. Typical Maximum Transmission Units (MTUs)

Network MTU (bytes)
Hyperchannel 65535
16 Mbits/sec token ring (IBM) 17914
4 Mbits/sec token ring (IEEE
802.5)

4464

FDDI 4352
Ethernet 1500
IEEE 802.3/802.2 1492
X.25 576
Point-to-Point (low delay) 296

The MSS is announced in SYN and SYN/ACK packets, and should only bee
seen in those. The MSS is the largest data segment that can be carried in the
IP datagram. It is equal to the MTU minus the length of the IP and TCP
headers. Operating systems will typically announce a MSS equal to the MTU
minus 40 (MTU – 20 bytes of IP header – 20 bytes of TCP header), no matter
how many options are being advertised.

While the MSS very much depends on the underlying technology to which a
host is connected, some OSes calculate the value in peculiar ways. For
instance nmap uses the fact that when queried with a very low MSS value in a
SYN packet, old Linux kernels would respond by echoing the value in their
SYN/ACK instead of stating the actual MSS possible at their end. During
this study, we observed other particular behaviours. OpenBSD versions 2.5-
2.7 for instance advertise a shorter MSS in a SYN/ACK segment containing
the TCP Timestamp option. This is because at this point of the connection
set-up, these systems are aware that the TCP timestamp option will be used
throughout the session, and will consume space in the TCP headers of
subsequent segments7. OpenBSD version 2.8 and above still take into
account the space needed for options when calculating the MSS, but advertise
a value equals to MTU-40 whether the segment is a SYN or a SYN/ACK.
Another OS, QNX RTP 6.0, also demonstrates a particular MSS setting. The
value it advertises in both SYN and SYN/ACK segments is equal to MTU-41.
This was fixed in later QNX versions.

No Operation (NOP)

The No Operation (NOP) TCP option is used to provide padding around other
options, for example, to align the beginning of the next option on a 32-bit
word boundary. Unlike the MSS, the NOP option may appear in any TCP
segment. The use of this option is not mandatory, and it is explicitly

7 See implementation details from source code of OpenBSD 2.5-2.7 file
/netinet/tcp_input.c.

16 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

specified in RFC 793[18] that the receiver must be prepared to process
options even if they do not begin on a 32-bit word boundary. Operating
systems tend to use it differently. When looking at the order in which the
TCP options appear, nmap takes into account the location of the NOPs.

End of Option List (EOL)

As its name indicates, The End of Option List (EOL) signifies that the end of
the TCP options have been reached (i.e. there are no more TCP options to
follow). Note that the list of options may be shorter than the Data Offset field
might imply. This is because the Data Offset field is given in 32-bit words,
but the length of the TCP options might not be a multiple of 32 bits. The
EOL option needs only to be used if the end of the options would not
otherwise coincide with the end of the TCP header. Some OSes will use NOP
between options instead of using the EOL at the end. Macintosh systems are
among the rare OSes to use the EOL option. Nmap was the first OS detection
tool to check for the EOL TCP option. Ettercap, and since recently p0f,
perform that check also.

Window Scale (WSCALE)

The Window field described earlier is only 16 bits long. This limits the
maximum window size to 65535 bytes. The “Window Scale” option was
defined to allow a host to advertise a buffer space bigger than 65535 bytes.
As described in RFC 1323, the option has two purposes: (1) indicate that the
TCP is prepared to both send and receive window scaling, and (2)
communicate a scale factor to be applied to its receive window. To enable
window scaling in either direction, both sides must send Window Scale
options in their SYN segments. Like the MSS, the WSCALE option should
only appear in SYN and SYN/ACK packets. It should not be seen in a
SYN/ACK packet if it was not first advertised in the SYN packet.

The Window Scale value gives the number of bits by which the Window size
field’s value should be shitted when expressed in binary. For example,
suppose two Operating Systems advertise a Window of 65535
(1111111111111111 in binary), but one had set a Window Scale value of 1 in
its SYN segment, and the other a Window Scale value of 2. The former is
announcing a buffer space of 65535x21 (11111111111111110 in binary), and
the latter is announcing 65535x22 (111111111111111100 in binary). The
Window Scale option is relatively new compared to the MSS option, and not
all OSes implement it. Some OS detection tools, such as nmap, check to see
whether or not the option is supported. The p0f tool is the only one we have
seen that also considers the value of the Window Scale option.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 17

Timestamp

Also described in RFC 1323, is the Timestamp option. The purpose of this
option is to estimate the Round Trip Time (RTT) in order to identify changes
in latency, and thus identify situations that may require acknowledgment
timer adjustments. The Timestamps option has two fields. The first field is
the Timestamp Value (TSval), which contains the current value of the
timestamp clock of the TCP sending the option. The second field is the
Timestamp Echo Reply field (TSecr) and is only valid if the ACK bit is set in
the TCP header. When valid, it echoes a TSval received from the remote
TCP. The TSecr value will generally be from the most recent Timestamp
option that was received. When TSecr is not valid, its value must be zero.
Unlike the MSS and WSCALE options, the timestamp option is typically
used throughout the TCP session.

The TSval is obtained from a (virtual) clock called the "timestamp clock". Its
value must be at least approximately proportional to real time. The rate at
which each system increments the clock varies between OSes. For example
most BSD systems update the clock once every 500ms, while Linux systems
update it more frequently (once every 10ms, or even once every 1ms for some
kernels).

Another example of differences among OSes can be seen in Windows
2000/Me/XP. The update rate is once every 100ms, but they use the
Timestamp option in a peculiar way. They support the option but won’t
advertise it when initiating a connection (i.e., when sending a segment
containing a SYN bit and no ACK bit). When probed by a SYN packet
having the Timestamp option set, they will acknowledge the option in their
SYN/ACK, but with a TSval equal to 0. They wait until the Three Way
Handshake is completed before sending their first nonzero TSval.

Nmap uses these existing differences regarding the TSval settings when
guessing the operating system of a target. To do so, the tool makes multiple
connections to its target and computes the update rate based on the elapsed
time versus the TSval increment.

It is also possible to gain other pieces of information about a system by
looking at the TSval. As pointed in [19], the TSval is, for some OSes, tied to
the system uptime. For such systems, once the update rate of their timestamp
clock is known, one can deduce the last time the computers have been
rebooted by capturing a packet having the TCP Timestamp option set. While
detecting the system uptime has nothing to do with OS detection, it can be
useful information when monitoring a network.

18 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

Selective Acknowledgments Permitted (SackOK) and
Selective Acknowledgment Data (Sack)

The concept of selective acknowledgment is described in RFC 2018[20]. Its
purpose is to allow a receiver to acknowledge non-consecutive data. When
this mechanism is not used, a TCP receiver can only acknowledge the packets
up to the Sequence Number immediately before a missing packet. This
means for example that if 100 packets are received but the second packet is
missing, the receiver can only acknowledge the receipt of the data contained
in the 1st packet, so the sender would have to retransmit packets 2 through
100. By using Selective Acknowledgment, the receiver can acknowledge the
receipt of packet one and all packets between 3 and 100. Thus, the sender
only needs to retransmit packet 2. There are two options for the Selective
Acknowledgment mechanism. The first is an enabling option, Selective
Acknowledgment Permitted (SackOK), which may be sent in a SYN segment
to indicate that the mechanism can be used once the connection is established.
SackOK must be included in the TCP options in both the SYN and
SYN/ACK packets of the Three Way Handshake, or it cannot be used. The
other is the Selective Acknowledgment (Sack) option itself, which may be
sent over an established connection once permitted by the SackOK
notifications. This option is of variable length and gives a list of pairs of
Sequence Numbers, where each pair defines a range of numbered bytes that
are being acknowledged.

Selective Acknowledgment is only supported by a few Operating Systems
(generally the most recent ones). Some OS detection tools, such as nmap or
p0f, check whether or not the option is supported.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 19

3. Passives Tests Developed

The network security research team at CRC has developed novel techniques for
passive operating system discovery. Some of the techniques were inspired by active
tools and adapted to be conducted passively on regular traffic. We have developed
about a dozen tests that analyse headers of packets captured from a network. They are
passive and thus they do not send any probe packets. Moreover, they only analyse
headers at the link, network, and transport layer, thus the approach also has the
advantage of remaining applicable whether the application layer is encrypted or not.

Our tests are conducted on the headers of various types of protocol: ARP, IP, ICMP,
UDP and TCP. We have developed a prototype based on these techniques and built a
database containing the fingerprints of close to 200 versions of operating system.

The passive techniques we use go beyond individual packet analysis. Stimulus and
response packets are passively collected, identified, paired, and analysed together to
allow for more accuracy. While matching corresponding stimulus and response is
easily done with our approach, it seems to be overlooked by current available passive
tools. Our method also allows for analysing samples of packets transmitted by a
computer (typically to observe how a certain header field evolves). We define three
categories of tests as described below.

3.1 Categories of Passive Tests

Through out this document, the term test refers to a series of specific criteria that are
used to examine a given packet or group of packets. Below are the categories of tests
we define.

3.1.1 Singleton

Tests in this category are conducted on a single packet (a singleton). They
typically look for default values of header fields in order to identify the OS of
the sender of the packet.

The general algorithm to perform a Singleton test is as follows:

1. Monitor traffic, listening for packets satisfying a certain filter;

2. Compute the signature once a packet is captured;

3. Obtain the corresponding OS (or group of OSes) from the signature
database.

20 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

3.1.2 Sample

This second category of test requires capturing a sample of packets a host
sends out. A Sample test typically analyses how a certain field evolves as
consecutive packets are being transmitted. Any of our Sample tests requires
two parameters: (1) the number of packets composing the sample, and (2) the
maximum delay (in millisecond) that can separate the last packet from the
first.

The general algorithm is this case is:

1. Monitor traffic, listening for packets satisfying a certain filter;

2. Hold in memory captured packets by Source IP address until a sample is
complete.

3. Compute the signature on the sample;

4. Obtain the corresponding OS (or group of OSes) from the signature
database.

As it will be seen shortly, the tests we have defined in this category may
produce inaccurate results for several reasons, in particular if packets of a
given sequence are missed, or if a machine under observation reboots during
the sampling process. The maximum delay restriction is an attempt to limit
the chances of getting samples that will produce inaccurate results.

3.1.3 Stimulus-Response

This category is required because some packets are “answers” to other
previously transmitted packets. The settings in a response packet may depend
on the request that was made. For example, the TCP options of a SYN/ACK
packet are partly dependent on the TCP options of the SYN packet. It is the
OS of the “responder” that such a test tries to identify (e.g. the sender of the
SYN/ACK packet in the previous example). Note that this category of tests
includes cases where the response from the target to a certain stimulus is to
remain quiet. In these particular cases however, it is not always easy to
passively determine whether the target system does not respond to such
stimuli or whether it is simply down or even whether the response was missed
because of asymmetric routing.

The general algorithm of a Stimulus-Response test is as follows:

1. Monitor traffic, listening for packets satisfying either the stimulus or the
response filter;

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 21

2. If the captured packet is a stimulus, hold it in memory by destination IP
address and go back to monitoring. If the packet is a response, search
allocated memory for the corresponding stimulus and then go to step 3;

3. Compute the signature based on the stimulus-response pair;

4. Obtain the corresponding OS (or group of OSes) from the signature
database to determine the OS of the sender of the response.

Stimulus-Response tests have a parameter that defines the maximum delay (in
millisecond) an unanswered stimulus can remain in memory. Once the
timeout is passed, unanswered stimuli may be processed depending on the
particular test.

3.2 Tests Descriptions

3.2.1 PassiveTest_TCP_SYN (Singleton)

This test is conducted on the first packet that establishes a TCP connection
(i.e. a SYN packet). It was inspired by p0f’s v1, and we have added a check
for all TCP options, taking their order into account. The SYN test of p0f v2
has evolved to also take the order of TCP options into account.

Fields under analysis are found in the IP and TCP headers. The criteria we
define are:

1. Is the IP Don’t Fragment bit set in the IP header? (“Y” or “N”)

2. What is the value of the IP Time To Live field? (one-byte integer
expressed in decimal format)

3. What is the value of the TCP Window size field? (two-byte integer
expressed in decimal format, or n(MSS) if Window size is "n" times the
advertised MSS)

4. What TCP ECN bits, if any, are set? (“C”=CWR, “E”=Ecn-Echo)

5. What TCP options are advertised, and in what order do they appear?
(“M”= Maximum Segment Size, “N”= No-operation, “T”= Timestamp,
“W”= Window Scale, “S”= SackOK, “L”= End Of List, “C.New”=
Connection Counts New8). We also capture the value for the Maximum
Segment Size and Window Scale options using the format

8 Connection Counts New (CC.NEW) is non-standard. It was defined in RFC 1644 in
1994, T/TCP -- TCP Extensions for Transactions Functional Specification, which has
the RFC experimental status. This option is supported by old FreeBSD versions.

22 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

“@DecimalValue”. Similarly, if the tsval value of the timestamp option
is zero, we denote this by T@0.

Signature example:
DF=Y;TTL=128;WIN=44(MSS);TCP_Ecn=;TCPopts=M@1460NNS;

Note that the TTL value decrements by one each time a packet passes through
a router and the value of the Maximum Segment Size option depends not only
on the OS but also on the MTU at the target end-point. The signatures in the
database contain TTL and MSS values for local hosts sharing an Ethernet
link. When the prototype program attempts to identify the OS of a remote
host based on those signatures, special look-up algorithms are called upon to
try to identify the most plausible matches for the TTL and the MSS.

The TCP Window size field and the value of the Window Scale TCP option
of some OSes may vary depending on the application involved. As described
later in section 4.2.1, the signatures were produced using a limited number of
application clients. The signatures provided in Table 12 of Annex A are
therefore not exhaustive. It can be observed from Table 12 that the order in
which the TCP options are set helps distinguishing between the different
operating systems family, and that the Window Size helps discriminate
between versions among a given family.

3.2.2 PassiveTest_ARP_Request (Singleton)

This test is of type Singleton; the packet it listens for is an ARP request. It
was developed based on Address Resolution Protocol (ARP) traffic observed
within the network testbed. As discussed in section 2.3.5, the content of the
Target Hardware address of an ARP request varies with operating systems.
Most systems initialise it with 0x000000000000; others such as Solaris and
the original Mac OS fill it with 0xffffffffffff. Some versions of FreeBSD
even fail to initialise the field and so it contains allocated memory garbage.

Based on traffic observed on a network separate from the testbed, we have
planned for two other categories of behaviours: systems that initialise the
Target Hardware address with the value of their own Source Hardware
Address, and systems that initialise it with the Destination address included
in the Ethernet header when sending a directed ARP request (i.e. not
broadcasted). This happens for systems that refresh their cache by asking the
remote machine if it's still using that IP.

Note that because ARP is confined to the broadcasting environment on which
the hosts are connected, the monitor will only see the ARP traffic from hosts
on the same physical network.

The one field examined in this test appears in the ARP header. The criterion
for differentiating between operating systems is the following:

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 23

1. What is the value of the Target Hardware address field?
(“0x000000000000”, “0xffffffffffff”, “uninitialized”,
“SourceHardwareAddress”, “EthernetDestinationAddress”)

Signature example: TargetHardwareAddress=0xffffffffffff;

The signatures collected appear in Table 13 of Annex A. It can be observed
that FreeBSD 5.0 and 5.1 can easily be detected. Mac OS prior to Mac OS X
and Solaris systems can also be distinguished from the other OS families
based on this test.

3.2.3 PassiveTest_TCP_ISN (Sample)

This test tries to categorize the target based on Initial Sequence Numbers
(ISNs) generation. Recall that the ISNs are exchanged during the TCP
connection set-up; they correspond to the Sequence Numbers found in the
SYN and SYN/ACK packets (see section 2.3.10 and 2.3.12).

Categorizing the ISNs generation requires the monitor to collect a sample of
ISNs generated by the target. The ISNs sampled are then analysed to
determine if and how they are related to one another. There may be
uncertainties in the outcome of such a test for several reasons. As described
below, some are related to the sampling technique, while others are related to
the difficulty of defining robust classification algorithms.

First, depending on the network conditions and its configuration, there can be
cases where the ISNs sampled were not generated one after the other. For
example, the sample may contain duplicate ISNs when TCP retransmits
packets due to packet loss during network congestion, or the order of the
ISNs in the sample may differ from the order in which they were generated if
packets arrive out of order to the monitor capturing the packets. It can also be
that, due to its location, the monitor does not see all traffic emerging from the
target. For example, suppose the network configuration depicted in Figure 1,
where the cloud represent a switching environment that separates the shared
media to which hosts A and B are connected from the one shared by hosts C
and D. Suppose the system under observation (host A) is communicating
with hosts B and C. The monitor (host D) will only see the communication
between A and C, but not the one between A and B. Thus, in this example,
the monitor will miss any ISN exchanged between A and B.

24 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

Figure 1. Limitation due to the position of the monitor when doing sequencing analysis

The algorithms used to analyse how the ISNs are generated may also be
troublesome. It is not always easy to determine whether or not numbers are
randomly generated, nor is it obvious how to distinguish among random
number generators.

The test PassiveTest_TCP_ISN is based on nmap’s TSeq test. To construct a
sample, nmap initiates six consecutive connections with the target, and
captures the SYN/ACK packets it receives in response. If at least 4 responses
are received and that the delay between the probes9 is no longer than one
second, nmap considers the sample as being suitable for its calculations.

nmap classifies ISNs into several categories:

• Constant ISNs, i.e. OS always starts a connection using the same ISN
(e.g. Commodore 64);

• ISNs that are multiple of 64000 (e.g. old UNIX and MAC OS prior to OS
9);

• ISNs that are multiple of 800 (e.g. IBM OS/2);

• ISNs incremented using random positive increments (most OSes);

• ISNs randomly generated (e.g. OpenBSD 2.9 or higher);

• Time dependent ISNs, i.e. ISN is incremented by a small fixed amount
each time period (e.g. Windows 95/98/NT);

The algorithms nmap uses to classify the target into these different categories
are based on computation of standard deviation and greatest common divisor,

9 nmap has an option that allows the user to set the delay between the transmission of
each stimulus. The longer the delay, the stealthier the tool is. However, in cases where
the location of the system running nmap prevents it from seeing all of its target's traffic,
a longer delay increases the likelihood of getting non-consecutive ISNs. This is
because the target can communicate with other hosts during the sampling period.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 25

made on the set of the differences between the Sequence Numbers (i.e.
{SeqNb(i+1)-SeqNb(i)}, where SeqNb(i) is the Sequence Number of the ith
packet sampled). The classification algorithms are simplistic. For example,
if at least one of these differences is greater than 50 million, the sample is
said to come from a true random generator. Similarly, nmap distinguishes
between the class random incremental and the class time dependent based on
the standard deviation value (if it is greater than a certain threshold, the
sample falls into the random incremental class rather than the time dependent
class without any consideration to the elapsed time). While definitely not
infallible, nmap’s classification obtained for several tested targets seem to be
consistent from sample to sample. For simplicity, we adopted the same
algorithms.

The main difference between our test and nmap’s test is in the choice of
packets composing the sample. In our case, we monitor both SYN and
SYN/ACK packets sent by the target, no matter what the destination address
is. Nmap captures only the SYN/ACK packets the target sends in response to
its stimuli. Thus, for our test we make the assumption that the ISNs for SYN
and SYN/ACK packets come from the same number generator, no matter
what the OS is.

We impose a somewhat more restrictive condition on the sample: while the
minimum number of packets is still four, all packets must arrive within one
second of the first packet. Actually, the “four packets”, and “one second”
(1000ms) are default values of user-defined parameters in the prototype
program. These default values were chosen based on observations made
during the analysis of two traffic traces (section 5) containing web traffic.
First, it appeared to be common for a host to initiate two to five TCP sessions
within one second. This is because many hosts were using Netscape as their
Browser, which uses separate TCP sessions to download a page containing
several components (e.g. text, images). Secondly, these conditions are so
restrictive that it is unlikely that other unseen TCP connections can be
initiated in between, no matter where the monitor is located. Note that if the
position of the monitor allows it to see all traffic of all hosts connected to the
network, then the “within one second” restriction on the sample is futile.
However, keeping a time restriction can prevent getting a sample with
packets sent before and after a machine reboots.

The single field analysed in this test is found in the TCP header. The criteria
defined are:

1. What class best describes the ISNs sampled? (“C”= Constant ISNs,
“64K”= ISNs that are multiple of 64000, “i800”= ISNs that are multiple
of 800, “RI”= ISNs incremented using random positive increments,
“TR”= ISNs randomly generated, “TD”= Time dependent ISNs)

2. When the Class is “C”, what is the value of the ISNs? (four-byte integer
expressed in decimal)

26 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

3. When the Class is “TD” or “RI”, what is the greater common divisor of
the ISN differences? (four-byte integer expressed in decimal)

4. When the Class is “TD” or “RI”, what is the value of the standard
deviation of the ISN differences? (four-byte integer expressed in decimal)

Signature examples: ISNClass=TD;gcd=1;std=50;

Note that as in the case of nmap’s approach, the greater common divisor
(gcd) and the standard deviation (std) are defined in the signature database in
terms of lower and upper bound values. This is because the samples contain
so few packets that these measures may vary a lot between samples. Thus, on
each sample we compute the greater common divisor and the standard
deviation, but when we look for a match in the database, we try to find one
for which the lower and upper bounds are satisfied. We describe in section
4.2.2 how we estimated those upper and lower bounds.

The collected signatures appear in Table 14 of Annex A. The testing of these
signatures on real user traffic indicates that the range delimited by the lower
and upper bounds of the standard deviation is not wide enough to capture all
possibilities. Note however that even if a perfect match is not found, the
ISNClass field of the signature does help distinguishing between operating
system families.

3.2.4 PassiveTest_IP_ID (Sample)

This test tries to categorize the target based on its IP ID number generation
(see section 2.3.4). It is based on nmap’s TSeq test. A sample of six packets
received within one second is inspected according to a modified version of
nmap’s classification algorithms.

This test presents the same reliability problems described for the
PassiveTest_TCP_ISN test due to the sampling process and analyzing
algorithms.

While nmap only looks at the IP ID of SYN/ACK packets it receives from the
target in response to its stimuli, we inspect all IP packets (not only those
carrying TCP segments). We do this because most of the systems keep track
of the IP ID value of the last IP datagram they have sent in order to produce
the next value. Said differently, the IP IDs of two consecutive IP datagram
sent by a host are very likely to be related to one another. Therefore, if we
only capture the value for some special kinds of datagram, we would miss
some sequenced IP IDs in between.

However, since we capture all IP traffic, we had to revise the nmap
classification given below. For some Linux systems for instance, the IP ID is
incremental within a TCP session, but starts at a random number each time a
new TCP session begins.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 27

The IP ID classes defined by nmap are:

• IDs incremented by one each time (Class I)

• IDs incremented by 256 each time (Class BI)10

• IDs incremented using random positive increments (Class RPI)

• IDs coming from a random distribution (Class RD)

• Repeatable IDs (Class C)

• Zeroed out IDs (Class Z)

The purpose of the class Z is to catch the few systems that zero out the IP ID
in their SYN/ACK packets. Linux kernels 2.4.4 to 2.4.21(at least) fall into
this category. In fact, Linux 2.4.xx routinely set the IPID field to 0x00 unless
fragmentation is permitted. The packet types with IPID set to zero depend on
the kernels. We observed that Linux 2.4.0-2.4.3 zero out the IPID for all
packets having the DF bit set to 1 and the MF bit set to 0, while Linux 2.4.4-
2.4.21 zero out the value for a subset of these packets, in particular, for ICMP
Echo Requests (and ICMP Echo Replies in the Linux 2.4.4 case), UDP
carrying DNS messages, TCP SYN/ACK, TCP RST/ACK, and some TCP
ACK packets responding to FIN/ACK packets.

For Linux kernels 2.4.4 and above, when the IP ID is nonzero, it is session
dependant. This means that several counters are running at the same time,
one per (source, destination, protocol) triple11. Each counter is initialised
randomly.

As described below, we have defined a subtest, of type Singleton, to capture
the zeroing behaviour. Packets with IPID equalled to zero are filtered out of
the samples passed to PassiveTest_IP_ID. We have removed the Class Z
from our version of the test based on samples, and added four new categories:

10 “BI” stands for “broken increment”. This 256-incremental behaviour is seen on some
little endian platforms when the operating system “forgets” to reorder the bytes. See
section 2.3.4 for more details.
11 When the protocol is TCP, the source and destination are defined by the pairs (source
IP address, source port) and (destination IP address, destination port) respectively.
However, when the protocol is UDP, the source and destination are simply the source
IP address and the destination IP address (i.e. no matter what the ports are). Moreover,
in the case of UDP, it appears that when the IP More Fragment bit is set to 0, the
destination address does not influence the IP ID. This means these versions of Linux
will have a global IP ID increment if they communicate using small UDP packets with
different destination hosts. Finally, in the case of ICMP, the source and destination are
defined by the source and destination address solely.

28 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

• IDs are session dependent, but incremented by one within a given session,
(Class I-SD)

• IDs are incremented by one globally, i.e. session independent (Class I-
SI).

• IDs are session dependent, but incremented by 256 within a given
session,
(Class BI-SD)

• IDs are incremented by 256 globally, i.e. session independent (Class BI-
SI).

The Class I is thereby a subset of both Classes I-SD and I-SI. When a sample
contains packets showing an incremental behaviour (incremented by one) but
all packets are within the same (source, destination, protocol) triple, then one
cannot distinguish between I-SD and I-SI and the sample will simply fall into
Class I. Same remark applies to Classes BI, BI-SD, and BI-SI.

The fields examined are found in the IP header. The criteria we define are:

1. What Class best describes the IDs sampled? (I, BI, RPI, RD, C, Z, I-SD,
I-SI, BI-SD, BI-SI)

2. What protocol over IP do the packets carry? (The integer value of the IP
Protocol field if all packets carry the same protocol, -1 otherwise)

Signature example: IPIDClass=I-SI;Protocol=-1;

The I-SD and BI-SD categories were defined based on Linux’s behaviours. It
is only once the prototype code was written that we realize that Mac OS prior
to Mac OS X and Solaris systems also maintain different counters, but in
these cases it is one counter per destination address (independently from the
protocol or the port numbers). Because of the way the code is written, the
results produced for these systems may appear contradictory. For example, a
TCP packets sample will produce a signature I-SD if it contains
communications with at least two different destination IP addresses, but may
also produce I-SI if this sample contains communication with a single
interlocutor, but involving different port numbers. At the time of writing the
signature database contains entries with both I-SD and I-SI signatures for
these Mac OS and Solaris systems.

To complement this test, we have added two subtests:
PassiveTest_Echo_IP_ID, and PassiveTest_NULL_IP_ID.
PassiveTest_Echo_IP_ID is of type Stimulus-Response and examines whether
the IP ID of a Response is echoed from the IP ID of the stimulus.
PassiveTest_NULL_IP_ID is of type Singleton and looks for a null IP ID (i.e.
IP ID with a zero value). These two subtests are useful in pinpointing certain

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 29

versions of OSes and are also useful for removal from the sampling process
of PassiveTest_IP_ID the packets with an echoed or null IP ID.

The criteria we define for the PassiveTest_NULL_IP_ID are:

1. Is the IPID value equal to zero? (Y or N)

2. What protocol over IP does the packet carry? (The integer value of the IP
Protocol field)

3. What “purpose” does the packet serve? (If the protocol over IP is ICMP,
the “purpose” is described using the ICMP type and Code fields; if the
protocol is TCP, the “purpose” is described by the TCP flags; if the
protocol is UDP, we tag the purpose as “none”, in other cases the purpose
is described as “UNKNOWN”).

Signature Example: NullIPID=Y;Protocol=1;PacketType=0:0;

The criteria we define for the PassiveTest_Echo_IP_ID are:

1. Is the IPID value in the response identical to the value in the stimulus? (Y
or N)

2. What protocol over IP does the response carry? (The integer value of the
IP Protocol field)

3. What “purpose” does the response serve? (If the protocol over IP is
ICMP, the “purpose” is described using the ICMP type and Code fields;
if the protocol is TCP, the “purpose” is described by the TCP flags; if the
protocol is UDP, we tag the purpose as “none”, in other cases the purpose
is described as “UNKNOWN”).

4. What protocol over IP does the stimulus carry? (The integer value of the
IP Protocol field)

5. What “purpose” does the stimulus serve? (refer to criterion 3.).

Signature Example:
IPIDEcho=Y;Protocol=1;PacketType=0:0;StimulusProcolol=1;StimulusPack
etType=8:0;

The signatures observed for IP ID settings of the different OSes appear in
Table 15, Table 16 and Table 17 of Annex A. Table 15 contains the result of
subtest PassiveTest_ECHOED_IP_ID. To reduce the size of the table, only
the echoed cases have been reported in this table. Table 16 contains the
results of subtest PassiveTest_NULL_IP_ID for Linux systems (other OSes
do not zero out the IPID). There are Linux versions with two signatures for
the same type of packet, one signature with NullIPID=Y and the other with
NullIPID=N. Refer for instance to the signatures for Linux 2.0.x- 2.2.x. This

30 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

is typical of Linux versions that have an incremental IP ID that starts at zero
on reboot. Therefore, in most cases the IP ID is nonzero, and will be equal to
zero only in the first packet transmitted after reboot. Linux 2.4.4-2.4.21
kernels have two signatures for a TCP ACK segment. These systems
sometimes send a null IPID in a TCP ACK segment in response to a
FIN/ACK packet. Table 17 contains the result of PassiveTest_IP_ID that
analyze samples. The examination of the IP ID field is particularly useful for
identifying Linux systems and distinguishing between the different kernel
versions of this family. This is because the Linux implementation of the IP
ID has distinctively changed from version to version. Moreover, certain
Linux distribution can be recognized. In particular, it appears that S.u.S.E.
distributions starting with S.u.S.E. 8.1 (kernel 2.4.19-4GB) do not zero out
the IP ID.

3.2.5 PassiveTest_TCP_TS (Sample)

This test tries to categorize the Timestamp clock update rate and is also based
on nmap’s TSeq test.

As before, the main difference between this test and nmap’s test is in the
packets composing the sample. Nmap’s samples are composed of SYN/ACK
packets responding to its stimuli (SYN packets having the TCP timestamp
option set). Nmap’s targets that do not support this option will fall into the
“Timestamp Unsupported” category. In contrast, we capture all SYN and
SYN/ACK packets having the TCP timestamp option set. Therefore, the
samples we get come from targets that do support this option. The nmap’s
“Timestamp Unsupported” class does not apply here and thus we do not
define it. Note however that this information can be gained with another test
of ours (PassiveTest_TCP_SYNACK, see section 3.2.8). Also note that a lot
of systems do support this option but won’t advertise it in their SYN packets.
Thus, a sample containing only SYN/ACK packets may indicates that the
target is from this category.

The Timestamp classes defined by nmap are:

• Timestamp clocks updated twice per second (Class 2HZ)

• Timestamp clocks updated 100 times per second (Class 100HZ)

• Timestamp clocks updated 1000 times per second (Class 1000HZ)

• Timestamp option unsupported by the OS (Class UNSUPPORTED)

• Timestamp option set but having a value of zero (Class Z)

We have added another category:

• Timestamp clocks updated 500 times per second (Class 500HZ)

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 31

This rate was observed for Linux kernels distributed by Red Hat version 8
(i.e. Red Hat modified kernels from 2.4.18-14 to at least 2.4.18-18.8.0).

While the Timestamp option may appear in any TCP packet, we chose to
monitor only SYN and SYN/ACK packets in order to pinpointing certain OS
versions that send a timestamp value of zero during the three-way handshake.
For instance Windows 2000 systems wait until the connection is established
before sending nonzero values. Thus, using our sampling method, a sample
coming from a machine running windows 2000 will have values of zero in all
its packets (Class Z). Moreover, Windows 2000 is from the category that
does not advertise the option in their SYN packets, thus the sample will
contain only SYN/ACK packets. NetBSD has adopted the same behaviour
since the release 1.6. In contrast with Windows, these systems advertise the
timestamp option in SYN packets as well.

In contrast with the tests PassiveTest_TCP_ISN and PassiveTest_IP_ID, the
accuracy of the test is not impaired if the monitor misses packets during the
sampling process. The restrictions on the sample can therefore be set more
loosely. However, because the timestamp clock is in some cases related to
the uptime of a machine [19], it can reset to zero when a system reboots.
Having a delay restriction can prevent getting a sample with packets sent
before and after a machine reboots.

The field under examination is found in the TCP header. The criterion we
define is:

1. What class best describes the timestamp clock update rate? (Z, 2HZ,
100HZ, 500HZ, 1000HZ)

Signature example: TSClass=100HZ;

The signatures collected for this test appear in Table 18 of Annex A.
Obviously, only the operating systems that support the TCP Timestamp
option are present in this table.

The OSes that stand out the most based on this test are the Windows systems,
recent releases of NetBSD, and Linux 2.4.18-14. The latter distinguishes
itself from the other Linux versions by incrementing the timestamp clock five
hundred times per seconds instead of one hundred times per second. This
kernel comes with the Red Hat 8 distribution. Also tested but not included in
the table was the kernel update 2.4.18-17 (also particular to Red Hat 8). This
kernel also showed the same update rate as Linux 2.4.18-14.

Another observation made during the development of this test is that setting
the timestamp value to zero in a SYN packet (as currently done by NetBSD)
produces an undesirable effect if the packet is destined to a Linux system.
While Linux does support the option and normally responds favourably to it,
it will not collaborate in this particular case. This means that although the

32 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

timestamp option is supported by both parties and was requested by the
initiator of the connection, it will not be use at all during the communication.

Assuming the practice of zeroing out the timestamp value during connection
set-up becomes so common that new operating systems are undistinguishable
based on this test, it may become necessary to remove the Class Z from this
test, and examine the update rate on all TCP packets with nonzero timestamp
values instead of restricting the sampling to SYN and SYN/ACK packets.
Note that a subtest of type Singleton could be defined to observe this zeroing
behaviour in SYN and SYN/ACK packets. This subtest could be defined to
listen for all TCP SYN and SYN/ACK packets and produce a signature based
on the following criteria:

1. Is the TCP timestamp option set? (Y or N)

2. Is the timestamp value of this option set to zero? (Y or N)

3. What flags are set in the TCP header? (S or SA)

3.2.6 PassiveTest_ARP_Retransmit (Sample)

This test is based the proof-of-concept program called Induce-ARP described
in section 2.1. It consists in observing the number of times an unanswered
ARP Request is retransmitted, and by analyzing the delays separating the
retransmissions. This situation of retransmitted ARP request happens for
instance when a host tries to contact an unused (or temporarily unreachable)
IP address on his subnet.

As with the PassiveTest_ARP_Request, this test can only be done on hosts
sharing the same broadcasting environment as the monitor (ARP packets are
not routed).

The sequence of unanswered ARP requests for the MAC address of a unique
IP address is analyzed based on 4 criteria:

1. How many packets in total does the system send? (integer, this counts the
first and the retransmitted packets)

2. What is the minimum delay between any two consecutive packets? (in
microseconds)

3. What is the maximum delay between any two consecutive packets? (in
microseconds)

4. What class best describes the delays between retransmission of packets?
(“C”= Constant, “LI”= Linear Increment, “OI”= Other than linear
Increment)

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 33

Signature example:
NbOfPackets=6;DelayMin=1000000;DelayMax=1000000;ARPClass=C;

Section 4.2.6 describes the signature collection process used to identify in
which category each operating system falls. The signatures are provided in
Table 19 of Annex A. While the network stack implementation of Linux
systems resembles in many aspects to the implementation in BSD families,
this test helps recognizing the Linux systems from the others. It also helps
distinguishing between the different kernel versions of Linux. Mac OS (prior
to version X) and Sun OS can also be distinguished from the other families
easily.

A major difficulty with this test is to detect whether an unanswered ARP
request is reissued because of the ARP module itself, or because a higher-
level module made several requests. The following example with Windows
systems illustrates the problem. The ARP module of Windows machines do
not retransmit ARP request. Thus suppose a Windows machine sends one
echo request (one ping) to an unreachable IP address on its subnet, then only
one ARP request will be seen. But suppose now that the Windows machine
sends multiple consecutive ping attempts to the unreachable IP address, then
for each of these attempts the ARP module will send one ARP request. This
later case may be falsely interpreted as being an ARP retransmission
situation. Because our test does not currently attempt to identify what
triggered the ARP module to send ARP requests, the program is likely to
produce false results.

Note also that the test does not attempt to match ARP requests with ARP
replies. This means that the case of an ARP request that receives an answer
may be mistaken with the case of no retransmission. To compensate, the
program only tries to find a match if the number of identical ARP requests
seen is greater than one.

3.2.7 PassiveTest_ICMP_ID_SEQ (Sample)

This test was inspired by Arkin’s observations regarding the ping utility of
Windows and Unix systems [7]. The ping utility is included with most
platforms to allow testing for TCP/IP connectivity using ICMP Echo
messages. In most cases, ping is a command-line utility, although there are
some Graphical User Interface (GUI) implementations.

Different ping implementations set the ICMP Identifier (ICMP ID) and ICMP
Sequence Number (ICMP Seq) parameters differently as discussed in 2.3.7.
PassiveTest_ICMP_ID_SEQ combines the two parameters together to
differentiate between OS families and versions. To the best of our
knowledge, there is currently no implementation of these techniques for
passive OS identification.

34 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

To fingerprint a host, PassiveTest_ICMP_ID_SEQ requires collecting a
sample of ICMP Echo Requests sent by that host. To be suitable for
examination, the sample collected must include Echo Requests directed at a
minimum of two different destination addresses. This is required to
determine the behaviour of the ICMP ID field.

The ICMP ID and ICMP Sequence Number fields are analyzed based on 4
criteria:

1. What Class best describes how ICMP IDs are generated? ("C" for
constant, "I" for incremental, "TDI" for Time Dependent Incremental (i.e.
likely to be tied to process ID), "RD" for randomly generated)

2. What invariant characterize the ICMP ID values? (the ICMP ID value
itself if class is “C”, the greatest common divider of the increments if
class is incremental (class “I” or “TDI”), or –1 if no invariant is
identified)

3. What Class best describes how ICMP Sequence Numbers are generated?
("C" for constant, "I" for incremental, "IGlobal" for globally incremental)

4. What invariant characterize the ICMP Sequence Numbers? (the value of
the ICMP Sequence Number itself if class is “C”, the value of the
increment if class is incremental (class “I” or “IGlobal”), or –1 if no
invariant is identified)

Signature Example:
ICMPIDClass=C;IDInvariant=200;ICMPSeqClass=IGlobal;SeqInvariant=10
0;

Invariants are expressed in hexadecimal values. When describing the ICMP
ID, the class “TDI” stands for Time-Dependent Incremental and indicate that
the ICMP ID increases by increments of different size. For most OSes that
fall into this category, the ICMP ID is tied to the Process ID (PID) associated
with ping, and thus the increment between consecutive instances of ping will
vary according to other processes in the system. Although the gaps are not
directly related to the elapsed time between ping calls, the longer the lapse of
time is, the more likely a number of processes in between will have been
launched. The relation between the ICMP Identifier and the PID can be
verified when the source code of ping is available. For FreeBSD systems for
instance, this is found in the ping.c file located in /usr/src/sbin/ping/ and in
which icmp_id takes its 16-bit value from getpid()&0xFFFF.

The signatures are provided in Table 27 of Annex A. Signatures for Mac OS
7 to 9 were produced with MacTCP Ping 2.0.212. Because these older

12 MacTCP Ping is an old, free, unsupported ping program from Apple Computer.
MacTCP Ping 2.0.2 comes with a GUI and is available for download at

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 35

versions of Mac OS do not come with a ping utility by default, users are
likely to install a different utility tool. In particular, a different behaviour was
observed using another ping utility named Mac TCP Watcher 2.013. With
TCP Watcher, a new ICMP ID and a new ICMP Seq are generated each time
the application is opened. The ICMP ID is fixed for each instance of the
application (i.e. once it is opened), while the ICMP Seq is globally
incremented (independent from the destination addresses).

The database does not currently include signatures for the Novell systems,
except for Novell 4.11 that had an easily identifiable behaviour. While the
ICMP Seq is easy to predict for Novell 5 and 6, the behaviour of the ICMP ID
is not well understood. The ping utility of Novell NetWare systems come
with a GUI from which users can ping multiple IP addresses simultaneously
and on which ping statistics are displayed. The following describes
observations made through experiments with the utility. When pinging
several targets with the same instance of the ping application, the ICMP ID is
the same for all targets, and the ICMP Seq is a global counter
(increment=0x0100). This produces a signature with an ICMP ID of class
“C”, and an ICMP Seq of class “IGlobal”. However, if the ping utility is
closed and reopened, the ICMP Seq is reset to 0, and then is incremented
(again by 0x0100), but the ICMP ID may change or not. If different, the new
ICMP ID is equal to the previous plus and increment multiple of 0x0100. In
this case, the signature produced has an ICMP ID of class “TDI” and an
ICMP Seq of class “IGlobal”. If the computer is rebooted, the ICMP ID
definitely changes, but still appears to be related to the previous value,
leading again to a signature with an ICMP ID of class “TDI” and an ICMP
Seq of class “IGlobal”. We chose not to include signatures for Novell 5 and 6
until the program is adapted to produce consistent signatures.

PassiveTest_ICMP_ID_SEQ performs well at distinguishing between
families and between versions. Recall however, that in order to fingerprint a
host, this test requires capturing a sample of ICMP Echo Requests directed at
multiple destination IP addresses. It may therefore require monitoring traffic
for a while in order to complete a proper sample. Because of this, we also
define two subtests PassiveTest_ICMP_ID and PassiveTest_ICMP_SEQ to
examine the ICMP Identifier and the ICMP Sequence Number independently.
PassiveTest_ICMP_ID is of type Singleton and is performed on a packet of
type Echo Request. It examines the value of the ICMP ID to determine if it is
equal to one of the constant values used by Windows. It also examines the
length and content contained in the ICMP data.

http://download.info.apple.com/Apple_Support_Area/Apple_Software_Updates/Englis
h-North_American/Macintosh/Misc/.
13 TCPWatcher is a shareware application for testing TCP/IP networks. As with
MacTCP Ping, TCPWatcher comes with a GUI. It is available for download from
http://www.vicomsoft.com/ftp_site/help.ftp.html#Watcher

36 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

Fields under analysis for the PassiveTest_ICMP_ID are found in the IP and
ICMP headers. The criteria we define are:

1. Is the ICMP ID value equal to a known constant value of Windows
system? (“0x0100”, “0x0200”, “0x0300”, or “other”)

2. Is the IP Don’t Fragment bit set? (“Y” or “N”)

3. What Type Of Service is specified? (decimal value)

4. What is the length of the packet payload? (number of bytes)

5. What is the content of the packet payload? (in hexadecimal)

Signature Example:
ICMPID=other;DF=N;TOS=0;DataLen=12;ConstantData=0000;

Criterion 1 is meant to distinguish Microsoft systems from the other OS
families. The data content signature (criterion 5) is restricted to the
immutable portion of the ICMP data. In the Windows case, this data portion
starts directly after the ICMP header; in the Unix-like case, it starts after the
first 8 bytes, and in the Novell case it starts after the first 10 bytes. Unix-
based ping utilities append the fixed data at an offset of 8-bytes after the end
of the ICMP header; the first 8 bytes consisting of a timestamp used for the
calculation of the round trip as described in the man page of ping. The
Novell ping utility sends 12 bytes of data. The first 8 bytes appear to act as a
timestamp (as with Unix), and the next two bytes behave like a counter per
target. That is, for each new target this two-byte field starts at 0x0000 in the
first Echo Request, it is then incremented by 0x0100 in the subsequent Echo
Requests directed at that target14. The data portion that is fixed in the Novell
case consists of the remaining two bytes.

PassiveTest_ICMP_SEQ is of type Sample; the sample contains ICMP Echo
requests sent by a given host and directed at a single destination address.
Since most ping utilities send by default several packets in order to collect
statistics15, such samples are likely to be seen. PassiveTest_ICMP_SEQ

14 While this behaviour is exacly how the ICMP Sequence Number is used by Unix-like
ping utilities, the ICMP Sequence Number is used differently by Novell’s ping. More
presisely, in the case of Novell, the two-byte field in the data portion is reset to zero
when a new target is being pinged, while the ICMP Sequence Number field does not.
This provides the Novell ping utility with two counters: one that is globally
incremented independently from the target (giving the number of Echo Requests sent in
total), and one that is specific for each target (giving the number of Echo Requests sent
to that target).
15 To test the reachability of the target, the ping utility of Windows system send four
Echo Requests by default. The ping utility of Unix-based systems is configured by
default to keep sending Echo Requests to the target until the user stops the application.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 37

attempts to characterize the setting of the ICMP Sequence Number in a
manner similar to the one performed by PassiveTest_ICMP_ID_SEQ. Since
it analyses Echo Requests directed at a single target, this subtest cannot
determine whether the Sequence Number act as a global counter or as a
counter specific to each target. Therefore the class “IGlobal” defined for the
test PassiveTest_ICMP_ID_SEQ does not apply.

The criteria we define for the PassiveTest_ICMP_SEQ are:

1. What Class best describes how ICMP Sequence Numbers are generated?
("C" for constant, "I" for Incremental behaviour)

2. What invariant characterize the ICMP Sequence Numbers? (the value of
the ICMP Sequence Number itself if class is “C”, the value of the
increment if class is incremental (class “I), or –1 if no invariant is
identified)

Signature Example: ICMPSeqClass=I;SeqInvariant=100;

The signatures for the two subtests are found in Table 28 and Table 29. As
with PassiveTest_ICMP_ID_SEQ, the signatures for Mac OS versions 7 to 9
were produced using MacTCP Ping 2.0.2.

3.2.8 PassiveTest_TCP_SYNACK (Stimulus-Response)

This test is based on nmap test T1 (which sends a crafted SYN packet to an
open port and analyses the SYN/ACK response).

PassiveTest_TCP_SYNACK is a Stimulus-Response type of test, where the
stimulus is a SYN packet and the response is a SYN/ACK packet. In contrast
with nmap T1 test, this is a passive test, thus it does not send any packet, and
it only listens for matching pairs of SYN and SYN/ACK packets. It is the
host sending the SYN/ACK packet that is being fingerprinted, but fields from
both the SYN and the SYN/ACK packets are required for the analysis.

Fields under analysis are found in the IP and TCP headers. The response
packets are analyzed based on eight criteria:

1. Is the IP Don’t Fragment bit set in the in the response? (“Y” or “N”)

2. What is the value of the IP Time To Live field in the response? (one-byte
integer expressed in decimal format)

3. What is the value of the TCP Window size in the response? (decimal
value, or n(MSS) if Window size is "n" times the Maximum Segment
Size advertised in the SYN/ACK, or n(ReqMSS) if Window size is "n"
times the Maximum Segment Size advertised in the SYN)

38 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

4. What is the TCP Acknowledgment number in the in the response (in
relation to the sequence number of the triggering SYN packet)? (“S” if
equal, “S++” if incremented by 1, “O” for any other value)

5. What TCP options are included in the in the response? (TCP options are
ordered as they appeared in the packet, “M”= Maximum Segment Size,
“N”= No-operation, “T”= Timestamp, “W”= Window Scale, “S”=
SackOK, “L”= End Of List, “C.New”= Connection Counts New). We
also capture the value for the Maximum Segment Size and Window Scale
options using the format “@DecimalValue”.

6. What TCP ECN bits are set, if any, in the response? (“C”=CWR,
“E”=Ecn-Echo)

7. Were the TCP ECN bits set in the stimulus (SYN packet)? (“C”=CWR,
“E”=Ecn-Echo)

8. What is the set of TCP options requested by the stimulus (SYN packet)?
(TCP options are sorted in alphabetic order and the NOP option is
omitted from this set.)

Signature example:

DF=Y;TTL=64;WIN=12(MSS);AckNb=S++;TCPecn=;TCPopts=M@1460;S
YN_ TCPecn=;SYN_SetofTCPopts={M@1460TW};

The signatures collected appear in Table 20 of Annex A. Criterion 3
examines the Window Size (WIN) value of the SYN/ACK. It can be
observed from Table 20 that the WIN value of FreeBSD, Mac OS X,
OpenBSD, Windows, SunOS 5.8 and 5.9, and NetBSD prior to 1.3 is a
multiple of the Maximum Segment Size (MSS) advertised in the stimulus. It
appears that the WIN value of SYN/ACK produced by certain OSes may also
depend on the network service running, the window size advertised in the
SYN and the TCP window scale option of the stimulus.

As described in section 4.2.7, we used several different SYN stimuli to collect
the SYN/ACK responses from the operating systems attached to the testbed.
The signature database would benefit from testing a wider range of network
services and from including in the fingerprint the influence of the WIN value
contained in the SYN.

During the signature collection process, we observed that the order in which
the options are set in the SYN packet has no impact on the response.
Therefore it is sufficient for criterion 8 to check only which options are set in
the SYN packet, independently of the order in which they appeared, and of
the padding in between options (the NOP). We believe the stimuli used to
collect the signatures are representative (at least TCP option wise) of any
SYN packet that can appear on the network in current implementations.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 39

Taking the SYN into account generally helps to reduce the number of
possible OSes. Take for instance the previous signature example. A simple
database query reveals that this signature is associated with eleven FreeBSD
versions (3.0, 3.1, 3.2, 3.3, 3.4, 3.5.1, 4.0, 4.1, 4.1.1, 4.2, 4.3). If we query
the database for the number of signatures matching the first six criteria (i.e.
DF=Y;TTL=64;
WIN=12(MSS);AckNb=S++;TCPecn=;TCPopts=M@1460;), but not
necessarily satisfying criteria 7 and 8, then the number of possible OS
versions jumps to twenty-seven (FreeBSD 2.1.5, 2.1.6, 2.1.7.1, 2.2.0, 2.2.1,
2.2.2, 2.2.5, 2.2.6, 2.2.7, 2.2.8, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5.1, 4.0, 4.1, 4.1.1, 4.2,
4.3, 4.4, and also OpenBSD 2.9, 3.0, 3.1, 3.2, 3.3). This is generally the case
for the other signatures produced by this test.

3.2.9 PassiveTest_TCP_RSTACK (Stimulus-Response)

PassiveTest_TCP_RSTACK is based on nmap’s T5 test (which sends a SYN
packet to a closed port). It is similar to the “PassiveTest_TCP_SYNACK”
test, but instead of looking for matching pairs of SYN and SYN/ACK
packets, it looks for matching pairs of SYN and RST/ACK packets. It is the
host responding with the RST/ACK packet that is being fingerprinted, but
fields from both packets are required for the analysis.

SYN packets addressed to closed ports are normally rejected by mean of a
RST/ACK packet. Note however that a RST/ACK response does not ensure
that the targeted port is in the state CLOSED. The response may come from a
filtering device responding on behalf of the target. If we have no information
about the state of the targeted port, then the result of the test is less reliable.

Fields under analysis are found in the IP and TCP headers. The response
packets are analyzed based on seven criteria:

1. Is the IP Don’t Fragment bit set in the response? (“Y” or “N”)

2. What is the value of the IP Time To Live field in the response? (one-byte
integer expressed in decimal format)

3. What is the value of the TCP Window size in the response? (two-byte
integer expressed in hexadecimal)

4. What is the TCP Acknowledgment number in the response (in relation to
the sequence number of the stimulus)? (“S” if equal, “S++” if
incremented by 1, “O” for any other value)

5. What TCP ECN bits, if any, are set in the response? (“C”=CWR,
“E”=Ecn-Echo)

6. What TCP flags are included in the response? (“R”=RST or
“RA”=RST/ACK) Note: If the flag is “R” alone, the Acknowledgment

40 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

number of criterion 4 is likely to be “O” since the field is invalid when
the ACK flag is not set.

7. What TCP options are included in the response? (the string "echoed": if
they are echoed from the stimulus, if not: a string containing the options
ordered as they appeared). Note: Most systems don't send any TCP
option when resetting a connection.

Signature Example:
DF=N;TTL=64;WIN=4000;AckNb=S++;TCPflags=AR;TCPopts=echoed;

The signatures collected appear in Table 21 of Annex A. Systems that are
easily distinguished based on this test are the QNX systems because they
echo the Window size and TCP options. SunOS 5.5 to 5.7 and Mac OS 7 to 8
also have a peculiar behaviour. They echo the TTL value of the stimulus in
the response. Assuming they get probed by systems with different TTL
values, they would be identified by PassiveTest_TCP_RSTACK since the
results would converge to this subset of possible OSes.

3.2.10 PassiveTest_ICMP_Unreach (Stimulus-Response)

This test is based on xprobe’s and nmap’s tests that send out a UDP packet to
a closed port to probe an ICMP port unreachable message. That is, the
stimulus is a UDP packet sent to a closed port, and the Response is an ICMP
port unreachable message (type=3, code=3).

Both of these active tools send the UDP packet to a port presumed to be
closed. A difficulty in modifying the test so that it can be conducted
passively is in defining a specific filter for the UDP traffic. Our approach is
to capture all UDP packets, store them temporarily in memory16, when an
ICMP port unreachable message is seen, the program then searches for the
corresponding stimulus in the allocated memory.

Fields under analysis are found in the IP, ICMP and UDP headers. The
responses are categorized based on the following nine criteria:

1. Is the IP Don’t Fragment bit set in the response? (“echoed” if echoed
from the stimulus, “Y” if the bit is set to one by default, or “N” if it is set
to zero by default)

2. What is the IP Time To Live value in the response? (decimal value)

3. What Type of service (TOS) is set in the response? (“echoed” if echoed
from the stimulus, or decimal value otherwise)

16 A stimulus with no matching response is removed from the allocated memory once it
gets two seconds old. The two-second is a default value for the user-defined parameter
of a Stimulus-Response type of test.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 41

4. How much bytes of the UDP Header and UDP data were returned in the
response? (“all” if returned integrally, the number bytes returned
otherwise)

5. Has the IP Total Length field of the offending packet been echoed
correctly in the response? (“Y” if echoed correctly, “-” if less than the
original value, or “+” if it is greater)

6. Has the IP Identification field of the offending packet been echoed
correctly in the response? (“Y”, or "N")

7. Have the IP flags and IP dataOffset fields been echoed correctly in the
response? (“Y” if fields are echoed correctly, “0” if zeroed it out, “N”
otherwise)

8. Has the IP checksum of the offending packet been zeroed out in the
response? (“0”, or “nonzero”)

9. Has the UDP checksum of the offending packet been echoed correctly in
the response? (“Y” if it is echoed correctly, “0” for zeroed out, “N” if
incorrect, or “N/A” if not enough bytes of the datagram were returned to
allow a check on this field)

Signature example:

DF=echoed;TTL=255;TOS=0;UDPLen=8;IntegIPLen=Y;IntegIPID=N;IntegI
PFlags=N; IntegIPck=0;IntegUDPck=0;

Information on how these fields are used in fingerprinting can be found in the
document describing xprobe [6].

While developing the signatures, targets were stimulated with different
stimulus setting of the IP Don’t Fragment bit and the IP Type Of Service to
determine if these values were echoed back. More details regarding the
signature collection process can be found in section 4.2.8. The signatures
collected appear in Table 22 of Annex A. This test discriminates very well
among the different OS families and among the different versions within
those families. There are no signatures for BeOS and QNX 4.0 to 6.0. These
systems did not respond to UDP packets destined to a close port.

3.2.11 PassiveTest_ICMP_Echo (Stimulus-Response)

This test is based on the xprobe test that sends an ICMP Echo request to its
target. The stimulus is an ICMP Echo request (type=8) having a nonzero
value for the ICMP code. The response packet is an ICMP Echo reply
(type=8). As with all Stimulus-Response tests, it is the host sending the
response packet that is being fingerprinted, but both the stimulus and the
response are required for the analysis.

42 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

Fields under analysis are found in the IP and ICMP headers. The responses
are categorized based on the following criteria:

1. Was there a response to the stimulus? (“Y” or “N”)

2. Is the IP Don’t Fragment bit set in the response? (“echoed” if echoed
from the stimulus, “Y” if the bit is set to one by default, or “N” if it is set
to zero by default)

3. What is the IP Time To Live value in the response? (decimal value)

4. What Type Of Service is specified in the response? (“echoed” if echoed
from the stimulus, or decimal value otherwise)

5. What is the IP Identification value in the response? (“echoed” if equal to
the IP ID of the stimulus, “0” if equal to zero, “nonzero” otherwise)

6. What is the ICMP code in the response? ("echoed" if the value is equal to
the nonzero value of the stimulus, the decimal value otherwise)

Signature example: Resp=Y;DF=echoed;TTL=128;TOS=0;
IPID=nonzero;Code=0;

The signatures collected appear in Table 23 of Annex A. The reader may
wonder why we check for responsiveness (first criterion) since most OSes are
configured to respond to directed ICMP echo requests. We check for
responsiveness because we noticed that some OSes, QNX 4.0/6.0 for
instance, do not respond to ICMP echo Request when the ICMP code is
nonzero. That is, they respond only if the ICMP code is 0. These OSes can
therefore easily be identified by PassiveTest_ICMP_Echo if this test ever
occurs.

Note that the stimulus we are looking for is in a sense abnormal because of
the nonzero ICMP code. Therefore it should not be seen as part of normal
traffic. Nonetheless, if such traffic appears, the test can identify Microsoft
family systems. This is because the Microsoft family appears to be the only
one to overwrite the ICMP code in their response. We decided to implement
this test, even though the stimulus is unlikely to appear, in order to detect
(and benefit from) this kind of “Microsoft give-away” probing. Nonetheless,
a glance at the signatures produced leads us to believe that a modified version
of this test, based on criteria 2, 3, 4, and 5, and performed on regular ICMP
echo request / ICMP echo reply pairs would also be useful in distinguishing
between families.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 43

3.2.12 PassiveTest_ICMP_Info (Stimulus-Response)

This test is based on xprobe test that sends an ICMP Information request to
detect whether or not a host responds to this kind of request. The stimuli are
ICMP Information requests (type=15) and the responses are ICMP
Information replies (type=16). The ICMP Information Request/Reply pair
was intended to support self-configuring systems such as diskless
workstations at boot time, to allow them to discover their IP address. Very
few machines are configured to respond to information requests, especially
since this mechanism is now obsolete as stated in RFC 1122[21]. There are
presently other protocols a diskless machine can use to discover its own IP
address. According to the author of xprobe, OpenVMS, HP UX 10.x, and
SunOS 4.x do respond to ICMP Information requests. We do not have access
to any of these systems to confirm.

Fields under analysis are found in the IP and ICMP headers. The responses
are categorized based on the following criteria:

1. Was there a response to the stimulus? (“Y” or “N”)

2. Is the IP Don’t Fragment bit set in the response? (“Y” or “N”)

3. What is the IP Time To Live value in the response? (decimal value)

4. What Type Of Service is specified in the response? (decimal value)

5. What is the IP Identification value in the response? (“echoed” if equal to
the IP ID of the stimulus, “0” if equal to zero, “nonzero” otherwise)

Signature example: Resp=Y;DF=Y;TTL=255;TOS=0;IPID=nonzero;

All operating systems connected to the testbed silently discard any ICMP
Information request (signature in this case is: Resp=N;DF=N/A;TTL=
N/A;TOS= N/A;IPID= N/A; where “N/A” stands for Not Applicable). Please
note that in the case of a non-response, it would be best to verify that the
system is up and that the ICMP messages are not filtered before we conclude
that this system is configured not to respond to ICMP Info requests. We have
not addressed this issue for the prototype but we can think of a few passive or
active techniques to discriminate between both cases. Passively, we could
check for recent network activities, actively, we could inject an ARP request
for targets that are on the same networks as the monitor. For other targets, we
may consider sending an ICMP echo-request, or use stealth host discovery
techniques such as those described in [22].

44 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

3.2.13 PassiveTest_ICMP_TS (Stimulus-Response)

This test is based on the xprobe test that sends an ICMP Timestamp request to
detect whether or not a host responds to this kind of request. The stimuli are
ICMP Timestamp requests (type=13) and the responses are ICMP Timestamp
replies (type=14).

The ICMP Time Stamp request allows a node to query another for the current
time. This allows the sender of the request to estimate the latency the
network is experiencing. Typically, recent operating systems do implement
this mechanism. For example, Windows 95/NT do not support it while
Windows 98/Me/2000/XP do.

Fields under analysis are found in the IP and ICMP headers. The responses
are categorized based on the following criteria:

1. Did the target respond to the stimulus? (“Y” or “N”)

2. Is the IP Don’t Fragment bit set in the response? (“echoed” if echoed
from the stimulus, “Y” if the bit is set to one by default, or “N” if it is set
to zero by default)

3. What is the IP Time To Live value in the response? (value in decimal
format)

4. What Type Of Service is specified in the response? (“echoed” if echoed
from the stimulus, or decimal value otherwise)

5. What is the IP Identification value in the response? (“echoed” if equal to
the IP ID of the stimulus, “0” if equal to zero, “nonzero” otherwise)

Signature example: Resp=Y;DF=Y;TTL=255;TOS=echoed;IPID=0;

The signatures collected appear in Table 25 of Annex A. This test is useful in
distinguishing between older and newer versions. Moreover, few OSes do
not echo the DF bit and TOS field. Only the Windows family do not echo the
TOS value; this family set the TOS to 0 independently of the requested TOS.
OSes that do not echo the DF are NetBSD 1.6, 1.6.1, QNX 6.2.1, the
Windows family, the Linux family, and the SunOS family. From the OSes
that do not echo the DF bit, Linux 2.4.0-2.4.4 and SunOS set the DF to 1, and
the others to 0. Moreover, while the TCP/IP stack implementation of SunOS
resembles in many aspects to the implementation in Mac OS prior to X, this
test helps discriminating between the two families since Mac OS systems
prior to X do not respond to ICMP Timestamp Requests.

As mentioned earlier, in the case of a non-response, it would be preferable to
verify that the system is up, that no filtering device blocks ICMP messages,

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 45

and that the monitor has proper coverage before concluding that the system
does not respond to ICMP Timestamp Requests.

3.2.14 PassiveTest_ICMP_Mask (Stimulus-Response)

This test is based on the xprobe test that sends an ICMP Mask address request
to detect whether or not a host responds to this kind of request. The stimuli
are ICMP Mask address requests (type=17) and the responses are ICMP Mask
address reply (type=18). The ICMP Address Mask Request (and Reply)
allows a node to determine what address mask is in use on a subnet to which
it is connected. It was primarily intended for diskless workstation at boot
time. RFC 1122 states that the implementation of the mechanism is entirely
optional17. Recent operating systems tend not to respond to Mask Address
requests. Therefore this test can discriminate between older and newer
versions among a given family. Within the Windows family for example,
Windows 95/98/NT (prior to NT service pack 4) respond to directed Mask
address requests, while all more recent Windows systems do not. SUN
Solaris systems (even newer ones) appear to be cooperative with this kind of
query.

Fields under analysis are found in the IP and ICMP headers. The responses
are categorized based on the following criteria:

1. Did the target respond to the stimulus? (“Y” or “N”)

2. Is the IP Don’t Fragment bit set in the target’s response? (“echoed” if
echoed from the stimulus, “Y” if the bit is set to one by default, or “N” if
it is set to zero by default)

3. What is the IP Time To Live value in the target’s response? (“echoed” if
equal to the TTL of the stimulus, otherwise it is the value in decimal
format)

4. What Type Of Service is specified in the target’s response? (“echoed” if
echoed from the stimulus, or decimal value otherwise)

5. What is the IP Identification value in the target’s response? (“echoed” if
equal to the IP ID of the stimulus, “0” if equal to zero, “nonzero”
otherwise)

Signature example: Resp=Y;DF=Y;TTL=255;TOS=echoed;IPID=nonzero;

17 This can be considered good practice, as the content of the reply would allow a
malicious attacker to gain knowledge about a remote network’s configuration.

46 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

Signatures are found in Table 26. Aside from discriminating among OS
versions based on responsiveness, this test is useful to identify certain OS
versions because of peculiarities in the setting of the examined fields. For
instance Mac OS 9.0 echoes the setting of the DF bit while all other OSes
tested use a default setting, independent from the value in the stimulus.
While most OSes echo the TOS value, the Windows family and Netware 5.1
set the DF bit to zero by default. Moreover, the Netware family can be easily
identified because they echo the TTL value for this particular ICMP type.

Again, in the case of a non-response, it would be preferable to verify that the
system is up, that no filtering device blocks ICMP message, and that the
monitor has proper coverage before concluding that the system does not
respond to ICMP Mask requests.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 47

4. Collecting the signatures

This section describes how we collected the OS fingerprints for each test. The
approach taken was to build our own database of fingerprints in a controlled private
environment. Target operating systems were installed and queried methodically in the
local testbed and the prototype was used to collect and store the signatures observed.
While this is somewhat time consuming initially, it helped achieve control and
uniformity over the testing process. The fingerprints can be found in Annex A.

4.1 Computer Network Testbed

The laboratory facility of the Network Security Research Group comprises a number
of computers, switches, routers and network security devices to support research
activities. It was decided that the testbed for this activity would include virtual
machines in order to test a great variety of operating systems, without having to
dedicate a large number of computers. Therefore, some computers in the testbed
emulated several different guest operating systems. A guest operating system is
basically encapsulated within a single file that acts as a virtual disk, thereby isolating it
from the host system and other virtual machines.

Most of the virtual OSes in the testbed were installed under VMware [23]. VMware
creates a virtualized x86 PC environment in which a guest operating system can run.
VMware does not modify the behaviour of the host and guest operating systems. A
host treats a guest workstation as an application, and as quoted from [23], “no
modifications need to be made to the guest operating system when it is installed on a
virtual machine.” Applications on a guest operating system run exactly as they do on a
regular system. The virtual machines were configured to use bridged networking so
that a guest operating system appeared as an additional computer on the same physical
Ethernet network as the host. According to the vendor, one can run simultaneously as
many guest OSes as the RAM allows for. Nonetheless, we refrained from
simultaneously opening too many guest operating systems per host, to insure that
neither the host nor its network adapter was overloaded.

VirtualPC is another software product we used to emulate few operating systems. This
product provides low-level PC hardware emulation, allowing the installation of any
PC-based operating system [24]. In particular, VirtualPC was used in the testbed to
install older systems for which the installation in VMware was troublesome. The few
host computers on which VMWare and VirtualPC were installed have Intel Pentium II
(~450Mhz), III (~1Ghz), and IV(~1.8 Ghz) processors, a minimum of 512 MB of
RAM, and disk drives capacities up to 120 GB.

The Macintosh virtual machines run on Apple hardware using Mac-on-Linux software
[25]. The Apple computers were 600 MHz and 400 MHz PowerPC with a minimum
of 256MB of RAM each.

48 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

With the exception of one SunOS version installed in VMware, the SunOS systems are
not emulated and are installed on Sparc stations (UltraSparc 200MHz-300MHz and
Axil311-320 (SS10 and SS20 clones)). The exception is with SunOS 5.8. This
version was installed both on a UltraSparc workstation and on an Intel-based PC (
under VMware) to determine whether there were differences in the signatures of
SunOS systems due to the processor technology (i.e. Intel versus Sparc).

Due to the use of virtual machines, the small testbed provided testers with access to
close to 200 operating system versions from different families (Windows, Linux,
OpenBSD, FreeBSD, NetBSD, SunOS, Macintosh, QNX, Novell, and BeOS). The list
of systems installed is provided in Table 2 and Table 3. Linux kernels of Table 2 were
downloaded from ftp://ftp.kernel.org/pub/, while Linux kernels in Table 3 were those
packaged with different Linux distributions.

The testbed is depicted in Figure 2. It includes the target systems from which to
collect the signatures (i.e. the systems to fingerprint), the passive OS detection
prototype to construct these signatures, a monitor to record all network traffic in
libpcap format (for further reference and re-learning purposes), and a few other
computers used in certain cases to establish a communication with the systems under
test. The signature collection process is discussed in the next section.

Figure 2. Testbed from which the signatures were collected

49

Table 2. Tested Operating Systems

BeOS FreeBSD
Linux 2.2.x
(kernel.org)

Linux 2.4.x
(kernel.org) MacOS NetBSD Netware OpenBSD QNX RTP SunOS Windows

5 2.0.5 2.2.0 2.4.0 10.1.0 1.1 4.11 2.0 4 5.5 NT 3.51

 2.1.0 2.2.2 2.4.1 10.1.1 1.2 4.11 sp9 2.1 6 5.5.1 95

 2.1.5 2.2.1 2.4.2 10.1.2 1.2.1 5 2.2 6.1 5.6 98

 2.1.6 2.2.3 2.4.3 10.1.3 1.3 5 sp6a 2.3 6.2 5.7 98 SE

 2.1.7.1 2.2.4 2.4.4 10.1.4 1.3.1 5.1 2.4 6.2.1 5.8 Me

 2.2.0 2.2.5 2.4.5 10.1.5 1.3.2 5.1 sp6 2.5 (Intel) 5.8 2000

 2.2.1 2.2.6 2.4.6 10.2.1 1.3.3 6 2.6 5.9 2000 sp2

 2.2.2 2.2.7 2.4.7 10.2.2 1.4 6 sp3 2.7 2000 sp3

 2.2.5 2.2.8 2.4.8 10.2.3 1.4.1 2.8 2000 sp4

 2.2.6 2.2.9 2.4.9 10.2.4 1.4.2 2.9 NT 4

 2.2.7 2.2.10 2.4.10 10.2.5 1.4.3 3.0 NT 4 sp3

 2.2.8 2.2.11 2.4.11 10.2.6 1.5 3.1 NT 4 sp4

 3.0 2.2.12 2.4.12 7.5.3 1.5.1 3.2 NT 4 sp6

 3.1 2.2.13 2.4.13 7.5.5 1.5.2 3.3 XP Home

 3.2 2.2.14 2.4.14 7.6 1.5.3 XP Pro

 3.3 2.2.15 2.4.15 7.6.1 1.6 Net

 3.4 2.2.16 2.4.16 8.0 1.6.1 2003

 3.5.1 2.2.17 2.4.17 8.1

 4.0 2.2.18 2.4.18 9.0

 4.1 2.2.19 2.4.19 9.1

 4.1.1 2.2.20 2.4.20 9.2.1

 4.2 2.2.21 9.2.2

 4.3 2.2.22

 4.4 2.2.23

 4.5 2.2.24

 4.6

 4.6.2

 4.7

 4.8

 5.0

 5.1

50

Table 3. Tested Operating system: Linux distribution

Distribution Debian Redhat S.u.S.E Mandrake

Releases 1.3 (kernel 2.0.29) 4.2 (kernel 2.0.30) 7.2 (kernel 2.4.4-4GB) PPC 9.1 (kernel 2.4.21-0.13mdk)

(and kernels) 2.0 (kernel 2.0.34) 5.0 and 5.1 (kernel 2.0.32) 7.3 (kernel 2.4.10-4GB)

 2.1 (kernel 2.0.36) 5.2 (kernel 2.0.36) 8.0 (kernel 2.4.18-4GB)

 3.0 (kernel 2.2.20-idepci) 6.0 (kernel 2.2.5-15) 8.1 (kernel 2.4.19-4GB)

 6.1 (kernel 2.2.12-20)

 6.2 (kernel 2.2.14-5)

 7.0 (kernel 2.2.16-22)

 7.1 (kernel 2.4.2-2)

 7.3 (kernel 2.4.18-3)

 8.0 (kernel 2.4.18-14)

 9.0 (kernel 2.4.20-8)

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 51

4.2 Stimulation Procedures and Traffic Capture

Analysis of the code implementation in open source systems was often used as a
starting point for constructing the signatures, but not for determining the signatures.
Signatures contained in the database were produced from network traffic collected
from the testbed. Target operating systems were installed and queried methodically in
the local testbed and the prototype was used to collect and store the signatures
observed. While this was somewhat time consuming initially, it helped achieve
control and uniformity in the testing process. Signatures for each test were collected
separately.

The general procedure was the same for all tests:

1. Stimulate each target sequentially (one after the other), either from a remote
machine or directly from the target depending on the test;

2. Capture the traffic with a monitor located on the same network segment as the
targets, and save the traffic trace in the tcpdump (libpcap) format. This traffic
trace file was accompanied by a text document describing how the targets were
stimulated and by a list of these targets (i.e. their IP addresses (which were private
and static) with their operating systems).

3. Once the traffic trace was complete, it was analysed by the prototype program
running in the learning mode.

When running in learning mode, the program interfaces with a database containing
several tables. First, there is a table that associates each IP address with its operating
system. This table is managed manually and updated each time a new system is
installed. Then, for each test there are two tables: one containing the distinct
signatures, and one that associates an operating system with one or sometimes
several18 signatures. Some tests, the PassiveTest_TCP_RSTACK for instance, have
few distinct signatures (few entries in their signature tables). This is because several
different systems respond identically to such tests. Keeping the signatures apart from
their OS associations helps in recognizing tests that best distinguish between operating
systems. Thus in the learning mode, the program analyses the traffic, seeking suitable
packets to be tested. When packets are found, the prototype generates the fingerprint,
adds the fingerprint to the appropriate signature table, and creates the association
between this signature and the operating system19 in the second table.

When associating an IP address to an operating system in the database, the operating
system description is broken down into several fields to allow comparison between
outputs. The fields that make up the descriptions are “Type”, “Release”, “Version”,
and “Kernel”. “Type” refers to the family (e.g. Windows, Mac OS, etc.). “Release”

18 For example, this is the case for the PassiveTest_TCP_SYNACK, for which each OS
has been stimulated during the signature collection process by eight different stimuli,
each requesting a particular set of TCP options.
19 The program can obtain the OS associated with an IP address by querying the table
that contains this information for hosts connected to the computer network testbed.

52 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

may be empty depending on the family. In the Windows case for instance, this field
corresponds to NT, XP, 2000, etc. and in the Mac OS case it corresponds to 7, 8, 9,
and 10. The “Version” provides further details such as the service pack for Windows
or a specific Mac OS 10 (Mac OS X) version such as 10.2.2. The “Kernel” field is
used for Linux systems.

The procedures adopted when stimulating the targets are briefly discussed in the
following sections. Note that when capturing traffic traces, we required that no other
activities took place on the network testbed.

4.2.1 PassiveTest_TCP_SYN

This test requires a single packet, namely a TCP SYN segment, from the
target. To force the transmission of a SYN packet, we used the web browser,
the telnet and ftp clients on each operating system, initiating hereby
communications with a server connected to the testbed. The signatures are
shown in Table 12 of Annex A.

4.2.2 PassiveTest_TCP_ISN

This test analyses Sequence Numbers found in the SYN and SYN/ACK
packets. It requires much attention when generating signatures. We
generated 60 samples (of 6 packets each) for every operating system. Several
samples were required in order to express the greatest common divisor (gcd)
and the standard deviation (std) of a sample in terms of lower and upper
bound values in the signature table. This lower and upper bound approach
was adopted because a sample contains so few packets that these measures
may vary a lot from one sample to another. When the program runs in a
mode different than learn, it computes the gcd and std on a sample, and tries
to find a signature in the database for which the two computed values fall into
the two respective ranges. The ranges for the gcd and std are thus estimated
based on the 60 samples captured. The signatures are shown in Table 14 of
Annex A.

To capture these samples, we used a third party tool called hping2 [26].
Using this tool from a remote host connected to the testbed, a series of crafted
SYN packets were sent to each target (360 SYN packets in total per target).
Each SYN packet was aimed at an unfiltered open port. For each stimulus the
target responded with a SYN/ACK segment announcing the initial Sequence
Number for the referenced connection. Upon reception of the SYN/ACK,
hping2 terminated the connection by sending a RST.

We observed that some targets do not handle the RST properly, and
retransmit the SYN/ACK. Linux machines with kernel 2.4.18 and above, fall
into this category. The observed behaviour of these Linux systems is the
following: they respond to the SYN with 6 SYN/ACK segments (i.e. 5
retransmissions). They wait 3 seconds before sending the first
retransmission, then 6, 12, 24, and finally 48 seconds between the last two.
This mishandling of the RST packet during the connection set-up was

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 53

observed for few other systems. This situation is not unique to the packet
generator used; it holds for any other tool that can perform a so-called half-
open SYN scan on its target.

While one can make an active OS detection test based on these observations,
this retransmission behaviour causes problems for the prototype program that
analyses the traffic. The program does not currently detect such duplicates.
This causes samples containing old retransmitted ISNs to be processed.
When we observed a target having this problematic behaviour, we removed
all traffic regarding this OS from the tcpdump trace, and stimulated this target
otherwise, using a complete three-way handshake connection set-up. To do
this we used a shell script calling nmap with the –sT option (in a “for” loop).

4.2.3 PassiveTest_IP_ID

This test, of type Sample, captures all IP traffic. Based on the observation
that some OSes maintain several IP ID counters running at the same time, one
per (source, destination, protocol) triple, we tried to generate traffic that
would mix ICMP, TCP, and UDP communications, and as far as possible, we
tried to mix it based on the following parameters: Protocols, IP destination
addresses, source and destination ports. The goal was to generate enough
samples so that the program could determine whether the IP ID generation is
session dependent or not. The approach taken was to utilize two shell scripts:
one installed on the machine under test (which is often platform dependent),
and one install on two different interlocutors. The system under test initiates
different communications with both interlocutors, which in turn also initiate
communications with the target. The signatures are shown in Table 17 of
Annex A.

4.2.4 PassiveTest_TCP_TS

This test requires capturing TCP SYN or SYN/ACK packets having the
timestamp option set. To generate the signatures for this test, we used the
same traffic traces collected for the PassiveTest_TCP_ISN. Note that the
crafted stimuli (SYN packets) had the TCP option turned on. The signatures
are shown in Table 18 of Annex A.

4.2.5 PassiveTest_ICMP_ID_SEQ

This test requires capturing ICMP Echo Requests transmitted by the ping
utility installed by default on the system. There is no ping utility installed by
default on Mac OS versions 7 to 9. As mentioned in section 3.2.7, a free tool
from Apple Computer was installed for testing. For most OSes, the ping
utility consists of a command line program. A shell script was written to
execute ping commands in sequence. The script was conceived to allow the
capture of six samples containing six Echo Requests each. Different samples
test have different test purposes. In particular, we were interested in
examining the impact of pinging different targets and having other processes
running. The same traffic traces were used to collect the signatures for the

54 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

subtests PassiveTest_ICMP_ID and PassiveTest_ICMP_SEQ. The signatures
are found in Table 27, Table 28 and Table 29.

4.2.6 PassiveTest_ARP_Request and PassiveTest_ARP_Retransmit

Both of these tests capture ARP Request packets. PassiveTest_ARP_Request
requires a single packet, while PassiveTest_ARP_Retransmit requires a
sample of such packets. To generate the traffic, the targets were stimulated
using induce-ARP (described in section 2.1). The signatures are shown in
Table 13 and Table 19 of Annex A.

4.2.7 PassiveTest_TCP_SYNACK and PassiveTest_TCP_RSTACK

To get the SYN/ACK and RST/ACK packets, targets were probed from eight
different machines. These machines were selected for their different sets of
TCP options they used to initiate a connection. The different sets of TCP
options of the stimuli are summarised in the following table.

Table 4. Stimuli used to collect SYN/ACK and RST/ACK signatures

OS used for sending
the stimulus

Set of TCP options
contained in the stimulus

TCP options ordered as they
appeared in the stimulus

Windows NT4 {M} M@1460
QNX 6.0 {M@1459} M@1459
Windows 2000 {M,S} M@1460NNS
OpenBSD 2.6 {M,T,W} M@1460NW@0NNT
NetBSD 1.6 {M,T@0,W} M@1460NW@0NNT@0
FreeBSD 2.2.8 {C.New,M,T,W} M@1460NW@0NNTNNC.New
Linux 2.4.7 {M,S,T,W} M@1460STNW@0
OpenBSD 2.9 {M,S,T,W} M@1460NNSNW@0NNT

The TCP options of the Windows NT 4 and QNX 6.0 stimuli differ by the
value of the MSS option. The QNX 6.0 stimulus was chosen to detect OSes
that echo the MSS value in their answer. The OpenBSD 2.6 and the NetBSD
1.6 initiate a connection with the same set of TCP options, except that
NetBSD 1.6 advertised a TSval of 0. The effect of this practice is that some
OSes that normally support the option will not participate in any timestamp
exchange. More explicitly, these machines will show support for the
Timestamp option in their response to OpenBSD 2.6, but not in their response
to NetBSD 1.6. This is the case for Linux 2.4.0 that responds with TCPopts=
M@1460NNTNW@0 when responding to a stimulus with
SYN_SetOfTCPopts={M@1460TW}, but with TCPopts= M@1460NW@0
when responding to a stimulus with SYN_SetOfTCPopts=
{M@1460T@0W} (see signatures for Linux 2.4.xx from Table 20). The
FreeBSD 2.2.8 stimulus was chosen because it advertises a non-standard
option (experimental status) as described in section 3.2.1. The last two OSes
(Linux 2.4.7 and OpenBSD 2.9) have the same TCP options in their SYN but
placed in a different order. We wanted to verify by this means that the order

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 55

in which options are set in the SYN packet does influence the order in which
the supported options are set in the response. Except for Mac OS 7.5.3 to
8.120, all other OS tested responded identically whether the SYN came from
OpenBSD 2.9 or from Linux 2.4.7. Thus when constructing the signatures, it
seems sufficient to check only which options were set in the SYN packets,
independently of the order in which they appear, and of the padding in
between options (the NOP). This practice helps reducing the number of
stimuli required to express all possible SYN packets.

The choice of these 8 stimuli to collect the signatures is representative (at
least TCP option wise) of the SYN packets that can be transmitted by any of
the OS systems attached to the testbed.

From each of the computers in Table 4, we used the telnet client six times.
We specified each time a different destination port number in the telnet
command: three known to be open, and three known to be closed. The
signatures are shown in Table 20 and Table 21 of Annex A for
PassiveTest_TCP_SYNACK and PassiveTest_TCP_RSTACK respectively.

4.2.8 PassiveTest_ICMP_Unreach/Echo/Info/TS/Mask

For these five Stimulus-Response tests, we stimulated the targets using
hping2 and an in-house modified version of xprobe1-0.0.2. Xprobe1-0.0.2
functions according to a logic tree and thus terminates as it reaches a leaf.
Depending on the branch of the tree, the stimulus it sends may differ. The in-
house modified version of xprobe produces a signature-based output based on
the responses to all of xprobe’s packets: a UDP packet aimed at a closed port,
an ICMP Echo request with a nonzero ICMP code value, an ICMP
Timestamp request, an ICMP Mask Address request, and a ICMP Information
request. In addition, a shell script calling hping was used to craft ICMP
requests with different TOS and DF values to determine whether or not the
responses would echo the values contained in the stimuli. The signatures are
shown in Table 22 to Table 26 of Annex A.

20 Experiments conducted on the testbed lead us to believe that these systems do not
process the last TCP option appearing in the SYN packet. Aside from the NOP and the
EOL options, these machines only support the MSS and Window scale option. They
show support for both options when stimulated by OpenBSD 2.9, but the Window
Scale option is missing from their response to Linux 2.4.7.

56 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

5. Field Test Evaluation

This section presents preliminary results obtained from two traffic traces captured in
November 2002 using a tapping device located on the intranet web server’ s segment
of the corporate network. Both traffic traces were captured using tcpdump with a filter
specified to monitor IP traffic from and to 59 IP addresses. The tapping device, a
Shomiti UTP Tap IL/1 from Finisar Company, was installed in cooperation with the
Corporate Network Systems section to tap the internal web server’s line. The content
of the two traffic traces is summarised in Table 5 and Table 6. Because of the tap’s
location, the traffic captured consists mainly of HTTP traffic. There would also have
been some ARP traffic if the capture filter had not filtered it out. This omission is
somewhat unfortunate since these traffic traces do not allow the testing of the ARP
based tests. Note that while the capture filter was specified to capture traffic involving
59 hosts21, the total number of different IP addresses seen is 50 in Trace 1, and 55 in
Trace 2. The total number of IP addresses includes the count of hosts being monitored
and hosts with whom they have communicated.

Table 5. Traffic Trace #1

File format: libpcap
Capture filter: (defined to capture traffic to/from 59 hosts)
Dates: November 13 to 15, 2002
Elapsed time: 2 days, 5 hours, 10 minutes, and 40.614 seconds
Packet count: 8714
Avg. packets/sec: 0.046
Bytes of traffic: 3815796
Avg. bytes/sec: 19.932 (159.456bps)
IP addresses seen in total: 50

Protocols Bytes %Bytes Packets %Packets

 Ethernet 3815796 100 8714 100

 Internet protocol 3815796 100 8714 100

 Internet Control Message protocol (ICMP) 120 0.003145 2 0.022952

 Transmission Control Protocol (TCP) 3815676 99.99686 8712 99.97705

 Hypertext transfer protocol (HTTP) 3807068 99.771267 8619 98.9098

 Non-HTTP traffic 8608 0.2255886 93 1.0672481

21 The operating system and version information for each of the monitored hosts was
also determined manually for comparison purposes.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 57

Table 6. Traffic Trace #2

File format: libpcap
Capture filter: (defined to capture traffic to/from 59 hosts)
Dates: November 25 to 29, 2002
Elapsed time: 4 days, 3 hours, 40 minutes, and 21.397 seconds
Packet count: 14779
Avg. packets/sec: 0.041
Bytes of traffic: 7451145
Avg. bytes/sec: 20.766 (166.128bps)
IP addresses seen in total: 55

Protocols Bytes %Bytes Packets %Packets

Frame 7451145 100 14779 100

 Ethernet 7451145 100 14779 100

 Internet protocol 7451145 100 14779 100

 Internet Control Message protocol (ICMP) 3662 0.049147 32 0.216523

 Transmission Control Protocol (TCP) 7447483 99.95085 14747 99.78348

 Hypertext transfer protocol 7423894 99.634271 14447 97.753569

 Non-HTTP traffic 23589 0.3165822 240 1.6239258

Aside from the learning mode described in section 4.2, there are two other modes in
which the prototype can run: verify and find. When run in either of these modes, the
program interfaces with the database in which the signatures and corresponding OS
associations are stored. When a test produces a signature that cannot be found in the
database, a mechanism to look for an alternative signature is called upon. The current
mechanism tries to find a match considering solely the most important fields of a given
test. The "importance" of each field of a test is indicated with a binary weight. A
weight of 1 indicates that the value must match exactly; while a 0 means that the field
is not required to match. Consider for instance the test PassiveTest_TCP_SYN which
consists in 5 fields: DF, TTL, WIN, TCP_Ecn; and TCPopts. We have assigned a
value of 0 for two of these fields: WIN and TCP_Ecn. This means that if this test
produces a signature for which no perfect match22 is found, the program will search the
database for alternative signatures matching the fields DF, TTL, TCPopts. To
illustrate, suppose a TCP SYN packet is captured and produces the following
signature:

DF=Y;TTL=128;WIN=faf0;TCP_Ecn=;TCPopts=M@1460NNS.

This signature does not appear in the database as it can be seen from Table 12, but two
alternative signatures can be found with different Window Size values:

• DF=Y;TTL=128;WIN=2000;TCP_Ecn=;TCPopts=M@1460NNS,
Associated with Windows 98 and 98 SE;

• DF=Y;TTL=128;WIN=4000;TCP_Ecn=;TCPopts=M@1460NNS,
Associated with Windows Me, Windows 2000 standard, sp3, sp4, sp6, Windows
XP Home, Professional, Windows Net and Windows 2003.

22 All fields computed match with those of a certain signature contained in the database.

58 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

In this example, the program would informed the user that it had to look for alternative
signatures, and the set of possible OSes found consists of Windows 98, 98 SE,
Windows Me, Windows 2000 standard, sp3, sp4, sp6, Windows XP Home,
Professional, Windows Net and Windows 2003. Table 7 summarise the results of each
test obtained with the mode verify. It can be seen that the two traces allowed the
testing of the following tests only:

• PassiveTest_TCP_SYN,

• PassiveTest_TCP_SYNACK,

• PassiveTest_TCP_TS,

• PassiveTest_TCP_ISN,

• PassiveTest_IP_ID,

• PassiveTest_ICMP_ID_SEQ,

• PassiveTest_ICMP_ID, and

• PassiveTest_ICMP_SEQ.

The columns entitled “# of good results” give the number of times a test produced a set
of possible OSes that does not conflict with the actual OS of the systems being tested.
The columns “# of false results” counts the number of times a test produced a
mismatch between the true OS and the set of possible OSes found. Finally, the
columns “# of results that cannot be verified” indicates the number of instances of a
test that were performed on IP addresses for which the true OS is unknown, and thus
for which the outcome cannot be verified. When it applies, the table indicates the
number of times a signature was obtained through the alternative signature
mechanism. For example, for the test PassiveTest_TCP_SYN in Trace 1, 57 out of
523 signatures did not find a perfect match, but found a match using the alternative
signature mechanism. Some of the signatures obtained from Trace 2 were new
signatures (i.e. never seen on the testbed). In such cases the outcomes were empty sets
because no match (or alternative match) was found in the database.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 59

Table 7. Results of individual tests

 Trace #1 Trace #2

of good
results

of false
results

of results
that cannot
be verified

of good
results

of
false

results

of results
that cannot
be verified

ARP Request 0 0 0 0 0 0
ARP Retransmit 0 0 0 0 0 0

TCP SYN
523
(incl. 57 alt) 0 0

678
(incl. 151 alt) 0 0

TCP SYN/ACK 522 0 0 626 0 0
TCP RST/ACK 0 0 0 0 0 0
TCP Timestamp 9 0 0 15 2 0

TCP ISN 22 2 0
37
(incl. 1 alt) 1 0

IP ID 1417 121 0 2507 206 2
ICMP Echo 0 0 0 0 0 0
ICMP Info 0 0 0 0 0 0
ICMP Mask 0 0 0 0 0 0
ICMP Timestamp 0 0 0 0 0 0
ICMP
Unreachable 0 0 0 0 0 0

ICMP ID SEQ 0 0 0 0 0
1 (a new
signature)

ICMP ID 0 0 2 4 0
26 (3 new
signatures)

ICMP SEQ 0 0 0 1 0 0

When analysing Trace #2, PassiveTest_ICMP_ID produced three new signatures for
which we could not verify the OS. Those signatures are:

1. ICMPID=other ;DF=N ;TOS=0 ;DataLen=24 ;ConstantData=UNKNOWN ;

2. ICMPID=other ;DF=Y ;TOS=0 ;DataLen=470 ;ConstantData=UNKNOWN ;

3. ICMPID=100 ;DF=N ;TOS=0 ;DataLen=9 ;ConstantData=UNKNOWN ;

For the host with the third unknown signature, PassiveTest_ICMP_ID_SEQ, which
examines how the ICMP Identifier and the ICMP Sequence Number vary, also found a
new signature:

1. ICMPIDClass=C ;IDInvariant=100 ;ICMPSeqClass=I ;SeqInvariant=100 ;

Some of the tests require parameter settings as described in section 3.1; these settings
appear in the first two columns of Table 8. Timeouts are in milliseconds (column 1)

60 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

and apply to tests of types Stimulus-Response and Sample. A timeout value of “-1”
indicates that the prototype can wait indefinitely (until the end of the traffic trace) to
complete the sample. The third column indicates which fields were given a weight
value of 0 for the alternative matching signature mechanism. These settings were
determined empirically and may require changes for different environments.

As mentioned in section 3.2 describing each test, some tests contain fields for which
the values depend on the network environment. These fields are the IP Time to Live
(TTL) and the TCP option Maximum Segment Size (MSS). The signatures in the
database contain TTL and MSS values for local hosts sharing an Ethernet link. The
look-up algorithm for these fields works in a fashion similar to the alternative
signature mechanism. If no exact match is found, it searches the database for plausible
values. The details of the matching algorithms for the TTL and MSS are very intuitive
and are thus not presented here.

Table 8. Tests Parameters

Parameters

Fields with Weight 0 if
alternative signature

mechanism is required

Timeout (ms) sample size

(# of packets)
ARP Request
ARP Retransmit 1500
TCP SYN WIN, TCPecn

TCP SYN/ACK 2000
WIN, ackNb, TCPecn,
SYN_TCPecn,

TCP RST/ACK 2000 ackNb, TCPecn, SYN_TCPecn,
TCP ISN 1000 4 val, gcd, std
IP ID 1000 6
TCP Timestamp -1 6
ICMP Echo 2000
ICMP Info 2000
ICMP Mask 2000
ICMP Timestamp 2000
ICMP Unreachable 2000
ICMP ID Seq -1 18

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 61

Each instance of a test is performed separately and its outcome (a set of possible Operating
Systems) is passed to an intersection module. This module manages the information coming
from all the tests and attempts to identify the set of possible OSes on which all tests agree.
The only difference between the mode verify and find is that the former checks whether the
true operating system associated with an IP address is known, and if so, it verifies if the
outcome of the test produces a mismatch.

Table 9 and Table 10 give the results for each individual host obtained with the prototype
running in verify mode. The IP addresses in the tables do not correspond to the real IP
addresses. They have all been anonymized to preserve the privacy of end users and of the
campus’s allocated IP address range. An IP address that appears in both traces will appear as
the same anonymized IP address across those traces. The IP addresses tested belong to hosts
being monitored and hosts with whom they have communicated. The number of IP addresses
for which communication was sufficient to conduct at least one test is 29 in both traces. Of
these 29 IP addresses, there were 28 IP addresses for which the true OS was known, either
exactly (24/28) or approximately (4/28). There also was one IP address in each trace with an
unknown OS.

62

Table 9. Results obtained from Traffic Trace #1 for each host

 Traffic Trace #1

IP addresses
(sanitized) Real OS Test conducted

Number of OSes
in set of OS

match
OSes contained in set of OS match

192.168.1.55 Linux 2.4.2-2

TCP_SYN, IP_ID,
TCP_ISN,
TCP_TS

OS MISMATCH
due IP_ID test 23

Other tests (including other instances of IPID tests) agreed on 26 results:

[Linux 2.4.2-2, Linux 2.4.4, Linux 2.4.4-4GB, Linux 2.4.5, Linux 2.4.7, Linux 2.4.6, Linux 2.4.8,
Linux 2.4.9, Linux 2.4.10, Linux 2.4.10-4GB, Linux 2.4.11, Linux 2.4.12, Linux 2.4.13, Linux
2.4.14, Linux 2.4.15, Linux 2.4.16, Linux 2.4.17, Linux 2.4.18, Linux 2.4.18-3, Linux 2.4.18-
4GB, Linux 2.4.18-14, Linux 2.4.19, Linux 2.4.19-4GB, Linux 2.4.20, Linux 2.4.20-8, Linux
2.4.21-0.13mdk]

192.168.5.175 Linux 2.4.18-17 24

TCP_SYN, IP_ID,
TCP_ISN,
TCP_TS 1 [Linux 2.4.18-14]

192.168.1.94 MacOS 10
TCP_SYN, IP_ID,
TCP_TS 1 [MacOS 10.0.0]

192.168.5.67 MacOS 10 TCP_SYN, IP_ID 1 [MacOS 10.0.0]

192.168.1.69 SunOS 5.7 TCP_SYN, IP_ID 4 [SunOS 5.5, SunOS 5.5.1, SunOS 5.6, SunOS 5.7]

192.168.5.224 SunOS 5.7 TCP_SYN, IP_ID 4 [SunOS 5.5, SunOS 5.5.1, SunOS 5.6, SunOS 5.7]

23 One IP_ID sample produced a [IPIDClass=RD, Protocol=6] signature while the true IPIDClass for protocol 6 (TCP) is either “IPIDClass=I” if
all packets belong to the same TCP session or “PIDClass=I-SD” otherwise.
24 This particular kernel does not appear in the signature database. However, Linux 2.4.18-17 is a kernel update for Redhad 9.0, which has kernel
2.4.18-14 in the CD installation. The database only contains the signature for 2.4.18-14.

63

 Traffic Trace #1

IP addresses
(sanitized) Real OS Test conducted

Number of OSes
in set of OS

match
OSes contained in set of OS match

192.168.5.57 SunOS 5.7
TCP_SYN, IP_ID,
TCP_ISN

OS MISMATCH
due to TCP_ISN25

 other tests agreed on 4 results [SunOS 5.5, SunOS 5.5.1, SunOS 5.6, SunOS 5.7]

192.168.1.106 SunOS 5.8 TCP_SYN, IP_ID 126 [SunOS 5.8]

192.168.1.97 SunOS 5.8
TCP_SYN, IP_ID,
TCP_ISN 127 [SunOS 5.8]

192.168.1.15 Windows 2000
TCP_SYN, IP_ID,
TCP_ISN 3 [Windows 2000 standard, Windows 2000 Server standard, Windows 2000 sp4]

192.168.1.159 Windows 2000 TCP_SYN, IP_ID 9

[Windows Millennium standard, Windows 2000 standard, Windows 2000 sp2, Windows 2000
sp3, Windows 2000 sp4, Windows XP Home, Windows XP Professional, Windows Net
standard, Windows 2003 Server standard]

192.168.1.163 Windows 2000 TCP_SYN, IP_ID 9

[Windows Millennium standard, Windows 2000 standard, Windows 2000 sp2, Windows 2000
sp3, Windows 2000 sp4, Windows XP Home, Windows XP Professional, Windows Net
standard, Windows 2003 Server standard]

192.168.1.191 Windows 2000 TCP_SYN, IP_ID 9

[Windows Millennium standard, Windows 2000 standard, Windows 2000 sp2, Windows 2000
sp3, Windows 2000 sp4, Windows XP Home, Windows XP Professional, Windows Net
standard, Windows 2003 Server standard]

192.168.5.148 Windows 2000 TCP_SYN, IP_ID 9

[Windows Millennium standard, Windows 2000 standard, Windows 2000 sp2, Windows 2000
sp3, Windows 2000 sp4, Windows XP Home, Windows XP Professional, Windows Net
standard, Windows 2003 Server standard]

192.168.5.162 Windows 2000 TCP_SYN, IP_ID 9

[Windows Millennium standard, Windows 2000 standard, Windows 2000 sp2, Windows 2000
sp3, Windows 2000 sp4, Windows XP Home, Windows XP Professional, Windows Net
standard, Windows 2003 Server standard]

25 There was one ISN sample for this host. This sample produced the signature [ISNClass=RI,val=-1,gcd=2,std=6411]. The measured standard
deviation (6411) is a little lower than what we obtained from all SunOS samples in the testbed. The alternative signature mechanism was not
called upon since the signature found a match for a few OSes (a few old versions of FreeBSD and OpenBSD, along with Windows 2000 and
Windows Me).
26 TCP_SYN on its own was sufficient to find OS.
27 TCP_SYN on its own was sufficient to find OS.

64

 Traffic Trace #1

IP addresses
(sanitized) Real OS Test conducted

Number of OSes
in set of OS

match
OSes contained in set of OS match

192.168.5.12 Windows 2000 TCP_SYN, IP_ID 9

[Windows Millennium standard, Windows 2000 standard, Windows 2000 sp2, Windows 2000
sp3, Windows 2000 sp4, Windows XP Home, Windows XP Professional, Windows Net
standard, Windows 2003 Server standard]

192.168.1.105 Windows 2000 TCP_SYN, IP_ID 9

[Windows Millennium standard, Windows 2000 standard, Windows 2000 sp2, Windows 2000
sp3, Windows 2000 sp4, Windows XP Home, Windows XP Professional, Windows Net
standard, Windows 2003 Server standard]

192.168.1.74 Windows 2000 TCP_SYN, IP_ID 9

[Windows Millennium standard, Windows 2000 standard, Windows 2000 sp2, Windows 2000
sp3, Windows 2000 sp4, Windows XP Home, Windows XP Professional, Windows Net
standard, Windows 2003 Server standard]

192.168.1.219
Windows 2000
sp2

TCP_SYN, IP_ID,
TCP_ISN

OS MISMATCH
due to TCP_ISN28

other tests agreed on 9 results

[Windows Millennium standard, Windows 2000 standard, Windows 2000 sp2, Windows 2000
sp3, Windows 2000 sp4, Windows XP Home, Windows XP Professional, Windows Net
standard, Windows 2003 Server standard]

192.168.3.16
Windows 2000
sp2

TCP_SYN, IP_ID,
TCP_ISN 4

[Windows Millennium standard, Windows 2000 standard, Windows 2000 sp2, Windows 2000
sp3]

192.168.5.26
Windows 2000
sp3 TCP_SYN, IP_ID 9

[Windows Millennium standard, Windows 2000 standard, Windows 2000 sp2, Windows 2000
sp3, Windows 2000 sp4, Windows XP Home, Windows XP Professional, Windows Net
standard, Windows 2003 Server standard]

192.168.1.79
Windows
Millennium TCP_SYN, IP_ID 9

[Windows Millennium standard, Windows 2000 standard, Windows 2000 sp2, Windows 2000
sp3, Windows 2000 sp4, Windows XP Home, Windows XP Professional, Windows Net
standard, Windows 2003 Server standard]

192.168.5.188 Windows NT 4 TCP_SYN, IP_ID 4 [Windows NT 4 standard, Windows NT 4 sp3, Windows NT 4 sp4, Windows NT 4 sp6]

28There was one ISN sample for this host in the trace. This sample produced the signature [ISNClass=RI,val=-1,gcd=1,std=27607]. The measured
standard deviation (27607) is a little higher than what we obtained from the testbed for Windows 2000 machines. The alternative signature
mechanism was not called upon since the signature had found a match in the database for several OSes, including a number of versions from
FreeBSD, OpenBSD, MacOS and SunOS families. The only Windows system matching the signature was Windows Millenium.

65

 Traffic Trace #1

IP addresses
(sanitized) Real OS Test conducted

Number of OSes
in set of OS

match
OSes contained in set of OS match

192.168.1.80
Windows XP
Professional TCP_SYN, IP_ID 9

[Windows Millennium standard, Windows 2000 standard, Windows 2000 sp2, Windows 2000
sp3, Windows 2000 sp4, Windows XP Home, Windows XP Professional, Windows Net
standard, Windows 2003 Server standard]

192.168.1.206
Windows XP
Professional TCP_SYN, IP_ID 9

[Windows Millennium standard, Windows 2000 standard, Windows 2000 sp2, Windows 2000
sp3, Windows 2000 sp4, Windows XP Home, Windows XP Professional, Windows Net
standard, Windows 2003 Server standard]

192.168.1.207
Windows XP
Professional TCP_SYN, IP_ID 9

[Windows Millennium standard, Windows 2000 standard, Windows 2000 sp2, Windows 2000
sp3, Windows 2000 sp4, Windows XP Home, Windows XP Professional, Windows Net
standard, Windows 2003 Server standard]

192.168.6.92
Linux RH 6.2,
kernel unknown 29

TCP_SYNACK,
TCP_ISN,
TCP_TS, IP_ID 3 [Linux 2.2.14-5, Linux 2.2.16, Linux 2.2.20]

192.168.3.154 Windows TCP_SYN, IP_ID 9

[Windows Millennium standard, Windows 2000 standard, Windows 2000 sp2, Windows 2000
sp3, Windows 2000 sp4, Windows XP Home, Windows XP Professional, Windows Net
standard, Windows 2003 Server standard]

outsider unknown ICMP_ID 7
[Netware 4.11, Netware 4.11 sp9, Netware 5, Netware 5 sp6a, Netware 5.1, Netware 5.1 sp6,
Netware 6 sp3]

Table 10. Results obtained from Traffic Trace #2 for each host

Traffic Trace #2

IP addresses
(sanitized) Real OS Test conducted

Number of OSes
in set of OS

match
OSes contained in set of OS match

29 The only information we had about this host was the Linux distribution (i.e. Red Hat 6.2). The kernel version we tested within this Linux
distribution was 2.2.14-5 (see Table 3), which was the basis kernel at installation of Red Hat 6.2.

66

Traffic Trace #2

IP addresses
(sanitized) Real OS Test conducted

Number of OSes
in set of OS

match
OSes contained in set of OS match

192.168.5.21 Linux 2.4.18-14

TCP_SYN, IP_ID,
TCP_TS,
ICMP_ID,
ICMP_SEQ 130 [Linux 2.4.18-14]

192.168.1.55 Linux 2.4.2-2

TCP_SYN, IP_ID,
TCP_ISN,
TCP_TS

OS MISMATCH
due to IP_ID31

other tests (including other instances of the test IP_ID) agreed on 11 results:

[Linux 2.4.0, Linux 2.4.2-2, Linux 2.4.4-4GB, Linux 2.4.8, Linux 2.4.12, Linux 2.4.17, Linux
2.4.18, Linux 2.4.18-4GB, Linux 2.4.19, Linux 2.4.19-4GB, Linux 2.4.10-4GB]

192.168.1.94 MacOS 10
TCP_SYN, IP_ID,
TCP_TS 1 [MacOS 10.0.0]

192.168.1.69 SunOS 5.7 TCP_SYN, IP_ID 4 [SunOS 5.5, SunOS 5.5.1, SunOS 5.6, SunOS 5.7]

192.168.5.224 SunOS 5.7 TCP_SYN, IP_ID 4 [SunOS 5.5, SunOS 5.5.1, SunOS 5.6, SunOS 5.7]

192.168.1.50 SunOS 5.7 TCP_SYN, IP_ID 4 [SunOS 5.5, SunOS 5.5.1, SunOS 5.6, SunOS 5.7]

192.168.1.106 SunOS 5.8 TCP_SYN, IP_ID 1 [SunOS 5.8]

192.168.1.97 SunOS 5.8
TCP_SYN, IP_ID,
TCP_ISN 11

[FreeBSD 4.2, MacOS 9.2.1,NetBSD 1.3.1, NetBSD 1.3.2, NetBSD 1.3.3, NetBSD 1.3,
OpenBSD 2.8, QNX RTP 6.1, SunOS (Intel) 5.8, SunOS 5.8, SunOS 5.9]

192.168.1.150 Windows 2000
TCP_SYN, IP_ID,
TCP_ISN 3 [Windows 2000 sp2, Windows Millennium standard, Windows 2000 standard]

192.168.1.158 Windows 2000 TCP_SYN, IP_ID 9

[Windows Millennium standard, Windows 2000 standard, Windows 2000 sp2, Windows 2000
sp3, Windows 2000 sp4, Windows XP Home, Windows XP Professional, Windows Net
standard, Windows 2003 Server standard]

30 TCP_TS was sufficient to pin point the OS.
31 One IP_ID sample produced a [IPIDClass=RD, Protocol=6] signature while the true IPIDClass for protocol 6 (TCP) is either “IPIDClass=I” if
all packets belong to the same TCP session or “PIDClass=I-SD” otherwise.

67

Traffic Trace #2

IP addresses
(sanitized) Real OS Test conducted

Number of OSes
in set of OS

match
OSes contained in set of OS match

192.168.1.159 Windows 2000 TCP_SYN, IP_ID 9

[Windows Millennium standard, Windows 2000 standard, Windows 2000 sp2, Windows 2000
sp3, Windows 2000 sp4, Windows XP Home, Windows XP Professional, Windows Net
standard, Windows 2003 Server standard]

192.168.1.163 Windows 2000 TCP_SYN, IP_ID 9

[Windows Millennium standard, Windows 2000 standard, Windows 2000 sp2, Windows 2000
sp3, Windows 2000 sp4, Windows XP Home, Windows XP Professional, Windows Net
standard, Windows 2003 Server standard]

192.168.1.191 Windows 2000 TCP_SYN, IP_ID 9

[Windows Millennium standard, Windows 2000 standard, Windows 2000 sp2, Windows 2000
sp3, Windows 2000 sp4, Windows XP Home, Windows XP Professional, Windows Net
standard, Windows 2003 Server standard]

192.168.5.148 Windows 2000 TCP_SYN, IP_ID 9

[Windows Millennium standard, Windows 2000 standard, Windows 2000 sp2, Windows 2000
sp3, Windows 2000 sp4, Windows XP Home, Windows XP Professional, Windows Net
standard, Windows 2003 Server standard]

192.168.5.162 Windows 2000 TCP_SYN, IP_ID 9

[Windows Millennium standard, Windows 2000 standard, Windows 2000 sp2, Windows 2000
sp3, Windows 2000 sp4, Windows XP Home, Windows XP Professional, Windows Net
standard, Windows 2003 Server standard]

192.168.5.12 Windows 2000 TCP_SYN, IP_ID 9

[Windows Millennium standard, Windows 2000 standard, Windows 2000 sp2, Windows 2000
sp3, Windows 2000 sp4, Windows XP Home, Windows XP Professional, Windows Net
standard, Windows 2003 Server standard]

192.168.1.105 Windows 2000 TCP_SYN, IP_ID 9

[Windows Millennium standard, Windows 2000 standard, Windows 2000 sp2, Windows 2000
sp3, Windows 2000 sp4, Windows XP Home, Windows XP Professional, Windows Net
standard, Windows 2003 Server standard]

192.168.1.74 Windows 2000 TCP_SYN, IP_ID 9

[Windows Millennium standard, Windows 2000 standard, Windows 2000 sp2, Windows 2000
sp3, Windows 2000 sp4, Windows XP Home, Windows XP Professional, Windows Net
standard, Windows 2003 Server standard]

68

Traffic Trace #2

IP addresses
(sanitized) Real OS Test conducted

Number of OSes
in set of OS

match
OSes contained in set of OS match

192.168.1.219
Windows 2000
sp2

TCP_SYN, IP_ID,
TCP_ISN

OS MISMATCH
due to TCP_ISN32

other tests agreed on the following results:

[Windows Millennium standard, Windows 2000 standard, Windows 2000 sp2, Windows 2000
sp3, Windows 2000 sp4, Windows XP Home, Windows XP Professional, Windows Net
standard, Windows 2003 Server standard]

192.168.3.16
Windows 2000
sp2

TCP_SYN, IP_ID,
TCP_ISN 4

[Windows 2000 sp2, Windows Millennium standard, Windows 2000 sp3, Windows 2000 Server
standard]

192.168.1.189
Windows 2000
sp3 TCP_SYN, IP_ID 9

[Windows Millennium standard, Windows 2000 standard, Windows 2000 sp2, Windows 2000
sp3, Windows 2000 sp4, Windows XP Home, Windows XP Professional, Windows Net
standard, Windows 2003 Server standard]

192.168.5.26
Windows 2000
sp3 TCP_SYN, IP_ID 9

[Windows Millennium standard, Windows 2000 standard, Windows 2000 sp2, Windows 2000
sp3, Windows 2000 sp4, Windows XP Home, Windows XP Professional, Windows Net
standard, Windows 2003 Server standard]

192.168.5.188 Windows NT 4.0 TCP_SYN, IP_ID 4 [Windows NT 4 standard, Windows NT 4 sp3, Windows NT 4 sp4, Windows NT 4 sp6]

192.168.1.80
Windows XP
Professional TCP_SYN, IP_ID 9

[Windows Millennium standard, Windows 2000 standard, Windows 2000 sp2, Windows 2000
sp3, Windows 2000 sp4, Windows XP Home, Windows XP Professional, Windows Net
standard, Windows 2003 Server standard]

192.168.1.206
Windows XP
Professional

TCP_SYN, IP_ID,
ICMP_ID 8

[Windows 2000 standard, Windows 2000 sp2, Windows 2000 sp3, Windows 2000 sp4,
Windows XP Home, Windows XP Professional, Windows Net standard, Windows 2003 Server
standard]

192.168.1.207
Windows XP
Professional TCP_SYN, IP_ID 9

[Windows Millennium standard, Windows 2000 standard, Windows 2000 sp2, Windows 2000
sp3, Windows 2000 sp4, Windows XP Home, Windows XP Professional, Windows Net
standard, Windows 2003 Server standard]

32 There was one ISN sample for this host in the trace. This sample produced the signature [ISNClass=RI,val=-1,gcd=1,std=27079]. The measured
standard deviation (27079) is a little higher than what we obtained from the testbed for Windows 2000 machines. The alternative signature
mechanism was not called upon since the signature had found a match in the database for several OSes. The only Windows system matching this
signature was Windows Millenium.

69

Traffic Trace #2

IP addresses
(sanitized) Real OS Test conducted

Number of OSes
in set of OS

match
OSes contained in set of OS match

192.168.6.93

Linux RH 6.2
(kernel unknown)
33

TCP_SYNACK,
IP_ID, TCP_ISN,
TCP_TS 9

[Linux 2.2.7, Linux 2.2.12-20, Linux 2.2.13, Linux 2.2.16, Linux 2.2.20, Linux 2.2.24, Linux
2.4.2-2, Linux 2.4.17, Linux 2.4.18]

192.168.3.154 Windows TCP_SYN, IP_ID 9

[Windows Millennium standard, Windows 2000 standard, Windows 2000 sp2, Windows 2000
sp3, Windows 2000 sp4, Windows XP Home, Windows XP Professional, Windows Net
standard, Windows 2003 Server standard]

192.168.15.15 unknown IP_ID 123
the set of possible OSes EXCLUDES Linux 2.4.2-2, Linux 2.4.4-Linux 2.4.21, Novell Netware,
OpenBSD 2.5-3.3, and Windows 95/98/NT

33 The only information we had about this host was the Linux distribution (i.e. Red Hat 6.2). The kernel version we tested within this Linux
distribution was 2.2.14-5 (see Table 3), which was the basis kernel at installation of Red Hat 6.2.

70 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

6. Development State of the Prototype

The passive OS detection prototype is one of a set of tools developed at CRC for
network monitoring and analysis. Although the prototype works as a standalone
application, it was also integrated into two in-house information gathering tools: a
Network Mapping Tool [27] that actively scans the network to discover topology and
information available about the network components and a Passive Network
Monitoring Tools [28] that gathers similar information without sending any packets.

The standalone version comes with three modes of operation: learn, find, verify. All
modes can run on live traffic or pre-recorded traffic traces. The purpose of the learn
mode is to collect the signature from an environment in which the association between
OS and IP addresses is known. The traffic traces used to learn the signature have been
archived. Therefore if a test is modified, the signatures for all OSes tested can be
updated according to the change made. Moreover, as new OS versions are being
released, procedures are in place to install and test the new systems in order to update
the database.

The find mode is the mode used on an environment for which we have little to no
knowledge. It allows acquiring OS information about the computers connected to the
network. The verify mode was developed for testing purposes. The only difference
between the verify mode and find mode is that the former checks whether the true
operating system associated with an IP address is known, and if so, it verifies if the
outcome of the test produces a mismatch. This mode is typically used on live traffic or
on traffic traces different than those from which the signatures were learned. As
displayed in Figure 3, the standalone version includes a Graphical User Interface
(GUI) to select the traffic trace or network interface to monitor and to select the tests
to activate. Parameters for Stimulus-Response and Sample tests (see section 3.1) can
be changed from that GUI. The results are not displayed graphically and are sent to a
database instead.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 71

Figure 3. Test selection menu

The two in-house Network Monitoring Tools provide the OS information and much
more via a graphical user interface. When called from these tools, the OS
identification tool runs in find mode. Figure 4 shows the connectivity and the
description of diverse network components discovered using the active Network
Mapping tool. In the left panel, computers and network devices are represented using
intuitive icons. The icon indicates the OS family identified. The right panel displays
more detailed information concerning the selected system (a Windows system in this
case). The GUI included in the Passive Network Monitoring Tool is displayed in
Figure 5. It provides an example of what an analyst would see once the passive
monitoring tool has been running for a period of time. The screenshot shows several
computers, a router, and a switch. The right panel displays more detailed information
concerning the selected system (a Novell system in this case). The prototype is

72 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

designed to display information in a summarized manner for users who are primarily
interested in aggregated information, but also allows analysts to examine in more
detail the performance of individual techniques. Techniques used in these tools
include the capability to discover active nodes, operating systems, the node’s role in
the network, system uptime, the services offered, the protocols supported, IP network
interface configuration and the network topology at different level of specification
(physical, logical). The focus is on developing reliable techniques and mitigating the
shortcomings found in available tools. More information on the capabilities of the
Network Mapping Tool and the Passive Network Monitoring tool can be found in [27]
and [28].

Figure 4. CRC’ s Active Network Mapping Tool GUI

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 73

Figure 5. CRC’ s Passive Network Monitoring Tool GUI

The structure of the code allows additional tests to be included easily. A new passive
test named PassiveTest_IP_TTL has been developed to identify OSes that send
different TTL values depending on the type of packet to transmit.
PassiveTest_IP_TTL is of type Singleton and monitors all IP traffic. While most OSes
allow the default TTL value to be changed, some OSes override this value for certain
types of packets. For example Linux systems use a value of 64 in a datagram carrying
a TCP segment, unless the RESET TCP flag is turned on, in which case, the TTL value
is 255. PassiveTest_IP_TTL may identify computers for which the overridable default
value has been changed.

Recent work within the team has focused on developing a Scenario-Driven Intrusion
Detection System (SDIDS) based on temporal logic [29]. The SDIDS is an evolution
of the Passive Network Monitoring Tool. This system has the ability to identify attack
scenarios involving multiple packets and to passively gather information about the
monitored network, providing thereby context with intrusion alarms. Traditional
Intrusion Detection Systems tend to suffer from a high false-positive rate. Bringing
context to intrusion detection can help address the false positive problem.

74 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

7. Limitations and Future Work

7.1 Limitations

7.1.1 Fingerprinting countermeasures

Whether they are passive or active, fingerprinting methods can be defeated.
Filtering devices can be configured to reject or silently discard certain types
of packets. Certain fields of packets transmitted may also be changed without
breaking communications. These changes can take place at the endpoint
transmitting the packets or at devices along the path. A few deception tools
were developed to specifically defeat known OS identification tools. IP
Personality is an example of a popular endpoint solution for Linux systems to
defeat nmap by impersonating a different OS [30]. Certain firewalls and
intrusion protection systems advertise having fingerprinting countermeasure
functionality (e.g. Sygate’s Personal Firewall [31]). However, this appears to
be centred on the more usual practice of dropping abnormal packets such as
those used by nmap. Therefore such solutions are less effective against
passive fingerprinting techniques based on normal traffic.

While making custom changes to the TCP/IP stack is easier to accomplish on
open source platforms, minor modifications (such as changing default values
for configurable variable) can be done on virtually any OS. When the stack
imitates the behaviours of an existing platform, the deception method is more
likely to go undetected. This is because a plausible signature may be found in
the database and thus lead to the wrong conclusion. In contrast, deception
attempts based on producing unusual signatures are likely to draw attention.
Experienced analysts may “reverse-engineer” the process or simply pay
closer attention to other traffic in order to deduce the original OS.

M. Smart et al. proposed the use of a protocol scrubber to defeat TCP/IP stack
fingerprinting [32]. The intended use of the fingerprint scrubber is to
transparently interpose between the Internet and the network under
protection. The goal of the tool is not to prevent fingerprinting when done
internally, but rather to prevent OS information leakage to the exterior world.
The OpenBSD packet filter is another example of a solution that allows end-
nodes or gateways to do traffic normalization with scrub rules [33].

Simple mechanisms have been implemented in the prototype to allow
individual test to look for alternative signatures when no perfect match is
found. This typically counters simplistic attempts to defeat fingerprinting. In
practice, we found that it is in the variety of the tests that OS information can
leak through despite the attempts to defeat OS detection. Because the
approach relies on several individual tests conducted of different protocols, it

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 75

takes much effort to defeat all tests. One has to introduce changes in enough
places to make the deception plausible.

A higher-level module in the prototype combines the outcomes of the tests to
obtain a set of the most plausible OS versions, those on which all test agree.
The prototype allows the analyst to browse the individual test results. This is
especially useful when the test disagree on the set of possible OSes. Based on
experiments in the lab where we used packet crafters and custom deception
measures, we believe that an experience analyst can in general determine
which test has failed and thus make an educated guess about the OS. In order
to automate the management of discrepancies and corroborative elements,
more effort would be required to enhance the correlation module. This would
further increase the level of confidence in the fingerprinting techniques.

7.1.2 Network Conditions and Configuration

Tests that rely on matching stimulus and response and tests based on
capturing samples of packets produced one after the other are sensitive to
packet loss. For tests relying on samples, an effort was made to make the
tests somewhat resilient to packet loss or packets arriving out of order. For
tests based on stimulus and response, the problem arises only when the
signature includes a check for responsiveness. Otherwise, the incomplete pair
is simply discarded and thus will not produce a misleading result. In general,
missing packets when doing passive fingerprinting is not as critical as in the
context of intrusion detection. The fingerprinting device may get another
chance to perform a test on subsequent packets. The intrusion detection
system on the other hand is expected to remain effective at all times.

Packet loss may be caused by network congestion but may also be due to
incompleteness of the network coverage. Improper coverage may not only
alter performance of certain Sample and Stimulus-Response types of tests, but
may also prevent hosts connected to the protected network from being
detected. Network devices such as switches, routers and firewalls will limit
any one sensor’s view of the entire network. Asymmetric routing topology
and load balancing devices are particularly troublesome. Network Address
Translation (NAT) technology makes all traffic from/to the protected network
appear to be coming from or destined to one node, making difficult the
identification of hosts behind the NATing device. Based on the topology and
the coverage level desired, the locations and number of sensors required may
vary greatly from one network to another. The optimum sensor deployment
strategy is in general difficult to determine. It typically involves making
decision to balance the cost, the load imposed on sensors, the ease of set-up
and maintenance, and the monitoring coverage.

Two tests, PassiveTest_TCP_Timestamp and PassiveTest_ARP_Retransmit,
are sensitive to delays. A variation in the round trip time due to network
condition may alter the performance of those tests. Another limitation is due
to the passive methodology itself. It may be impossible to determine whether

76 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

a lack of response is attributed to configuration of the host, improper network
coverage, or the presence of a filtering device. Moreover, the host not
responding may be down or may not even exist. For a test based on
determining whether or not a response was transmitted, the result is valid only
in the first case (i.e. due to configuration of OS). Because the prototype
currently has no mechanism to discriminate between these cases, tests based
on responsiveness are likely to produce unsuitable results.

7.2 Future Work

This effort has focused on developing the individual tests and implementing those tests
in a prototype capable of performing passive OS detection on live traffic or pre-
recorded traffic traces. The prototype was designed to ease the signature learning
process as well as the verification (evaluation) process. This allowed observing certain
cases that had not been foreseen. Many tests would benefit from a number of
adjustments as summarised in Table 11 of an upcoming section. We discuss here a
couple of related research activities that would complement the work we have done.

A comprehensive analysis of the signature database would be an interesting follow-up
of this work. For instance, the signature database could be analyzed with the intent of
determining, when possible, the combination of tests required to isolate a given
version of an operating system.

The signatures were collected from systems typically used as servers and workstations
(PCs and laptop). In environments where computers are not locked-down34, end-users
are likely to change configuration and add or remove new systems without prior notice
to network administrators. Because of this factor, the automated capability to discover
operating systems of end nodes is particularly useful. Nonetheless, end-nodes are not
the only TCP/IP stacks identified by fingerprinting tools. Routers, switches, printers,
firewalls, web cameras, and even game consoles are identifiable. A desirable update
for the database would include other types of networked components.

We are planning on using a similar passive fingerprinting approach to identify various
virtual private network (VPN) implementations. A useful addition to the monitoring
toolset would be the ability to identify through passive techniques the characteristics of
VPN implementations such as IPSec and other similar protocols based on both
proprietary and open source systems. It may be possible to identify specific
implementations associated with versions of operating systems and implementations in
network appliance devices.

The monitoring tools that have been developed by the Network Security Research
group at CRC have been tested in a “wired” environment in the lab, and within some
non-lab environments, using IPv4. With the potential rapid deployment of wireless

34 Locked down computers have hardware or software configurations which prohibit
users from modifying the configuration (e.g. preventing installation of new software).

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 77

LANs and other network technologies, such IPv6, including associated network
services, the active/passive tools must be readied for use in these environments. To be
able to use these tools in a WLAN environment (802.11 a/b/g), some modifications
may be necessary. However, the experience gathered in building the tools and the
algorithms used by the tools should be utilized in the wireless and IPv6 environments.

78 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

8. Conclusion

The Network Security Research Group at the Communication Research Centre (CRC)
has developed a series of tests for passively detecting operating systems, and has
implemented a prototype software tool as a proof of concept. For all the tests
implemented in the passive tool, the approach taken was based on the analysis of
packet headers at the data-link, network, and transport layers, thus the tool does not
rely on access to application data. Over a dozen tests have been developed to analyse
headers of packets seen on a network. The tests are conducted on headers of various
protocols: ARP, IP, ICMP, UDP, and TCP. The prototype goes beyond analysis of
individual packet commonly used in open source and commercial operating system
identification tools. Because certain packets have influence on subsequent packets,
some information can only be gained when related packets are analysed together. The
use of lightweight state-aware mechanisms to derived signatures for operating systems
is a unique approach. A test monitors the traffic for certain types of packets, produces
a signature based on the values seen in the packets monitored, and does a lookup in a
database to obtain a list of operating system associated with that signature.

The various tests developed were implemented in a JAVA prototype. On top of the
individual tests, the prototype includes mechanisms that manage and combine the
outcomes of all tests in order to produce the most likely subset of OS possibilities
associated with an IP address. The prototype has different modes of operation
allowing it to recognize new signatures, verify existing knowledge, or identify OSes of
unknown computers on an unknown network. All modes can run on live traffic or pre-
recorded traffic traces.

This document has described the OS fingerprinting techniques included in the passive
operating system identification prototype. In section 2, we provided background on
the state of the work on active and passive operating system identification. We gave a
detailed description of the header fields of the IPv4 TCP/IP protocol suite that are
useful in OS fingerprinting. In section 3, we described each of the individual tests
developed for the prototype. As described in section 4, the signatures were collected
from a private testbed. A variety of operating systems were installed and tested
systematically in order to capture the signatures. The approach achieved uniformity in
the testing of open source and non-open source operating systems. The signatures
collected are included in Annex A. Section 5 discussed the mechanisms that combine
the outcomes of individual tests together. Section 5 also presented the results obtained
from a small scale monitoring experiment on a campus network. Certain signatures
observed during this trial were different from those contained in the database. This
was expected because of the difficulty of controlling elements of influence, such as
application level software, when collecting the signatures. While the discrepancies
sometimes prevented the program from finding perfect matches, the alternative
signature lookup mechanisms were often able to correctly identify the OS nonetheless.
Section 6 discussed the current state of the prototype and its integration to other
monitoring tools developed at CRC. Lastly, limitations and desirable follow-up
activities were described in section 7.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 79

The tests are summarized in the following table, with their respective types and known
problems and/or limitations. This table also contains some ideas for enhancement.

80

Table 11. Comments on each test

Name of Test Type Comments Known problems and proposed enhancements
PassiveTest_TCP_SYN Singleton Almost identical to p0f’s

SYN test in p0f v2.
We believe that the TCP Window size field and the value of the
Window Scale TCP option of some OSes may vary depending
on the application involved. The signatures were produced
using a limited number of application clients. While the
signatures give accurate results for most common services, we
recommend that the signature collection process be revised to
test a greater variety of application clients. Until then, the
alternative signature mechanism helps in searching for non-
perfect match.

PassiveTest_ARP_Requests Singleton ARP is not routed; therefore
this test requires sharing a
link-layer with the hosts
under observation.

Based on traffic observed on a network different than the
testbed, we believe that there could be more categories of
possible values for the Target Hardware address than those
anticipated.

PassiveTest_TCP_ISN Sample More reliable if all traffic
transmitted by the host under
observation can be captured.

Evaluation performed on real user traffic clearly indicates that
the samples produced in the testbed to generate the signatures
are insufficient to capture all possible responses. We
recommend that the signature collection process be revised.
More samples are required, and when possible, the TCP/IP stack
implementation (program code) of open source OSes should be
examined. Moreover, the algorithms that decide whether or not
numbers are randomly generated are based on nmap program
and are simplistic. Thus, the algorithms could be improved.

PassiveTest_TCP_TS Sample In contrast with other Sample
test, this one can tolerate loss
of packets.

As an enhancement, a subtest of type Singleton could be defined
to observe the zeroing behaviour in SYN and SYN/ACK
packets. PassiveTest_TCP_TS could then be modified to
examine the update rate on all TCP packets.

81

Name of Test Type Comments Known problems and proposed enhancements
PassiveTest_IP_ID Sample More reliable if all traffic

transmitted by the host under
observation can be captured.

As described in section 3.2.4, we observed unanticipated
behaviour for Solaris and for Mac OS prior to Mac OS X. The
results (signatures) produced for these systems sometimes
appear contradictory. Improving the consistency of the
classification algorithm would help improving the accuracy of
this test.

subtest
PassiveTest_Null_IP_ID

Singleton This test removes from the
sampling process of
PassiveTest_IP_ID the
packets having an IP ID of
zero. This test is also
efficient at identifying
certain OS.

Some OSes get two different signatures for a given type of
packet. In some cases the OS may send a null value on reboot,
but nonzero values in subsequent packets. In some other cases it
is because the stimulus influences the IP ID value in the
response (refer to section 3.2.4 for comments on TCP ACK
packets transmitted by Linux in response to FIN/ACK packets).
A Singleton test cannot model such behaviour. Perhaps the test
type should be revisited to accommodate the few exceptional
cases.

subtest
PassiveTest_Echo_IP_ID

Stimulus-
Response

Removes from the sampling
process of
PassiveTest_IP_ID the
packets having an IP ID of
zero. Also efficient at
identifying certain OS.

82

Name of Test Type Comments Known problems and proposed enhancements
PassiveTest_ARP_Retransmit Sample ARP requests are not routed.

This test therefore requires
sharing a link-layer with the
target. This test is also
sensitive to delays introduced
by network congestion.

The current implementation listens for a sequence of identical
ARP requests. The implementation assumes, without further
checks, that these identical requests are retransmissions and that
the ARP module itself produces these retransmissions. As
described in section 3.2.6, this assumption does not always hold
and so the test may produce false results. While monitoring only
ARP requests provides a clear advantage since these packets are
broadcasted, monitoring related packets (e.g. ARP replies) may
prove to be useful. We recommend further investigation of the
use of the Stimulus-Response matching algorithm to ensure that
the sample consists only of unanswered ARP requests.

PassiveTest_ICMP_ID_SEQ Sample Requirements on the sample
make this test less likely to
be performed.

subtest
PassiveTest_ICMP_SEQ

Sample Has more chances to be
performed than
PassiveTest_ICMP_ID_SEQ.

subtest
PassiveTest_ICMP_ID

Singleton Has more chances to be
performed than
PassiveTest_ICMP_ID_SEQ.

The database does not currently include signatures for most
Novell systems. Further examination of Novell ping utility is
required to understand the behaviour. Changes to the signature
computation algorithm should then be made accordingly.

83

Name of Test Type Comments Known problems and proposed enhancements
PassiveTest_TCP_SYNACK Stimulus-

Response
This test reveals that taking
the TCP options of the SYN
into account helps gaining
precision. This is what is
lacking from most passive
OS detection tools such as
p0f v2 and ettercap.

It appears that the WIN value of SYN/ACK produced by certain
OSes may also depend on:
- the network service running (port),
- the window size advertised in the stimulus and
- the TCP window scale option of the stimulus.
We therefore recommend that the signature collection process be
revised to test a greater variety of application services and that
the signature calculation be modified to measure the influence of
the items listed above. Moreover, when examining the WIN
value, the program tries to determine if the value is a multiple of
the MSS value (TCP option), if not it then examines if it is a
multiple of the MSS advertised in the stimulus. It appears that
the check should be done in reverse order. Refer to Table 20 for
the comment concerning FreeBSD. This comment holds for
Mac OS X, OpenBSD, Windows, SunOS 5.8 and 5.9, and
NetBSD prior to 1.3 as well.

PassiveTest_TCP_RSTACK Stimulus-
Response

The influence of the SYN
packet is clearly seen. Some
OS versions echo certain
fields in the RST/ACK. The
program currently checks for
echoing behaviour on the
DF, TTL, WIN, and TCPopts
fields.

PassiveTest_ICMP_Unreach Stimulus-
Response

Performs well at providing
small subsets of possible OS
versions.

84

Name of Test Type Comments Known problems and proposed enhancements
PassiveTest_ICMP_Echo Stimulus-

Response
The stimulus being
monitored is an abnormal
packet, which makes this test
less likely to be performed.

The test can be easily modified to obtain the same level of
precision based on any pair of Echo Request/Reply messages.

PassiveTest_ICMP_Info Stimulus-
Response

It would be preferable to
ensure that the target is up
before concluding to a non-
response from this host.

PassiveTest_ICMP_Mask Stimulus-
Response

It would be preferable to
ensure that the target is up
before concluding to a non-
response from this host.

PassiveTest_ICMP_TS Stimulus-
Response

It would be preferable to
ensure that the target is up
before concluding to a non-
response from this host.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 85

References

[1] tcpdump program, an open source tool for analysing packets originally developed at the

Lawrence Berkeley National Lab. The tool can be downloaded from
http://www.tcpdump.org.

[2] F. Veysset, O. Courtay, O. Heen, “New Tool and Technique for remote Operating
System Fingerprinting”, April 2002. This document and the ring program were
available originally at www.intranode.com/pdf/techno/. Any reference to ring has now
disappeared from this site, however, a new version of ring (ringv2) can be obtained
from http://ringv2.tuxfamily.org/index.html.

[3] Concept, “OS Detection with ARP”, Napalm e-zine, Issue 6, July 2000. Article can be
found at http://www.defcon.tv/mag/napalm/napalm-6.txt. induce-arp (the tool
implementing these techniques) can be downloaded from several sites, in particular
from http://www.packetstormsecurity.org/UNIX/misc/induce-arp.tgz.

[4] F. Yarochkin, “Remote OS detection via TCP/IP Stack FingerPrinting”, October 18,
1998, available at www.insecure.org/nmap/nmap-fingerprinting-article.html. Nmap
program is available at www.insecure.org /nmap/nmap_download.html.

[5] queSO program, a discontinued active OS fingerprinting tool by Savage, can still be
downloaded from several sites, in particular from
http://www.phreak.org/archives/ftp.cerias.purdue.edu/pub/tools/unix/scanners/queso/.
The original homepage (http://www.apostols.org/) was teared down years ago.

[6] O. Arkin, F. Yarochkin, “X remote ICMP based OS fingerprinting techniques”, August
2001. The paper and Xprobe program can be download from http://www.sys-
security.com/html/projects/X.html.

[7] O. Arkin, “ICMP Usage in Scanning”, June 2001, available at http://www.sys-
security.com/html/projects/icmp.html

[8] nmap-hackers archive mailing list, http://lists.insecure.org/lists/nmap-hackers/.
Communications are indexed per years.

[9] p0f program, a passive OS fingerprinting tool by Michal Zalewski and maintained by
William Stearns. The tool can be downloaded from
http://lcamtuf.coredump.cx/p0f.shtml

[10] Ettercap program, a multipurpose sniffer/interceptor/logger for switched LAN. It
supports several active and passive features for network and host analysis. the tool can
be downloaded from http://ettercap.sourceforge.net/.

[11] J. Nazario, “Passive System fingerprinting using Network Client Applications”,
November 27, 2000, available at http://www.crimelabs.net/docs/passive.pdf

[12] P. Almquist, RFC 1349: “Type of Service in the Internet Protocol Suite”, status:
proposed standard, July 1992, available at http://www.ietf.org/rfc/.

[13] K. Nichols, S. Blake, F. Baker, D. Black, RFC 2474: “Definition of the Differentiated
Services Field (DS Field) in the IPv4 and IPv6 Headers”, status: proposed standard,
December 1998, available at http://www.ietf.org/rfc/.

[14] K. Ramakrishnan, S. Floyd, D. Black RFC 3168: “The Addition of Explicit Congestion
Notification (ECN) to IP”, status: proposed standard, September 2001, available at
http://www.ietf.org/rfc/.

[15] J. Postel, RFC 791: “Internet Protocol”, status: standard, September 1981,
available at http://www.ietf.org/rfc/.

86 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

[16] J. Postel, RFC 792: “Internet Control Message Protocol”, status: standard,
September 1981, available at http://www.ietf.org/rfc/.

[17] W. Richard Stevens, “TCP/IP Illustrated”, Volume 1: The protocols, Addison-
Wesley, 1994.

[18] J. Postel, RFC 793: “Transmission Control Protocol”, status: proposed standard,
September 1981, available at http://www.ietf.org/rfc/.

[19] B. McDanel, Beyond Security Ltd, “TCP Timestamping - Obtaining System Uptime
Remotely”, March 2001. Article can be found at the SecuriTeam.com web site
http://www.securiteam.com/securitynews/5NP0C153PI.html

[20] M. Mathis, J. Mahdavi, S. Floyd, A. Romanow, RFC 2018: “TCP Selective
Acknowledgement Options”, status: proposed standard, October 1996, available
at http://www.ietf.org/rfc/.

[21] R. Braden, RFC 1122: “Requirements for Internet Hosts - Communication
Layers”, status: standard, October 1989, available at http://www.ietf.org/rfc/.

[22] dethy, “Techniques To Validate Host-Connectivity”, whitepaper sent to
bugtraq@securityfocus.com mailing list, January 2001. Archive available at
http://lists.insecure.org/lists/bugtraq/2001/Jan/0218.html.

[23] VMWare’s Frequently Asked Questions (FAQ) website. Available at
http://www.vmware.com/products/desktop/ws_faqs.html

[24] VirtualPC software from Connectix. Information about products is available at
http://www.connectix.com/products/vpc5w.html

[25] Mac-on-Linux open-source software from Ibium HB. Information and
downloads available at http://www.maconlinux.org

[26] hping2 program, a packet crafter/analyser tool by Salvatore Sanfilippo, available
at http://www.hping.org/

[27] F. Massicotte, T. Whalen and C. Bilodeau, “Network Mapping Tool for Real-
Time Security Analysis”, NATO/RTO Symposium on Real-time Intrusion
Detection, Lisbon Portugal, May 2002. Document available at
ftp://ftp.rta.nato.int/PubFullText/RTO/MP/RTO-MP-101/MP-101-12.pdf

[28] Annie De Montigny-Leboeuf, Frédéric Massicotte, “Passive Network Discovery
for Real Time Situation Awareness”, NATO/RTO Adaptive Defence in
Unclassified Networks, Toulouse France, April 2004. Document available at
ftp://ftp.rta.nato.int/PubFullText/RTO/MP/RTO-MP-IST-041/MP-IST-041-
14.pdf

[29] Mathieu Couture, Béchir Ktari, Frédéric Massicotte, Mohamed Mejri, “A
Declarative Approach to Stateful Intrusion Detection and Network Monitoring”,
2nd Annual Conference on Privacy, Security and Trust, Fredericton, New
Brunswick, Canada, October 2004. Available at
http://dev.hil.unb.ca/Texts/PST/pdf/couture.pdf

[30] IP Personality, a patch for Linux kernel 2.4 to impersonate TCP/IP stack of other
operating systems, by Gaël Roualland, available at http://ippersonality.sourceforge.net/

[31] Sygate Personal Firewall, Product Information/Features and Benefits,
http://smb.sygate.com/products/pspf/whatsnew_pspf.htm

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 87

[32] M. Smart, G. R. Malan, and F. Jahanian, "Defeating TCP/IP stack fingerprinting," in
Proceedings of the 9th USENIX Security Symposium, August 2000. Available at
http://www.usenix.org/publications/library/proceedings/sec2000/smart.html

[33] pf.conf(5) Manual Page, OpenBSD Programmer’s Manual for the packet filter
configuration file. OpenBSD Manual Pages can be browsed from
http://www.openbsd.org/cgi-bin/man.cgi

88 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

Annex A: Collected Signatures

This Annex provides the signatures collected from the testbed for all tests described in this
document. As described in section 4.2, each test is concerned with two tables. One table
contains the distinct signatures and in which each distinct signature is associated with a key
identifier. The OS associations are stored in the other table. Each OS in this table is
associated to one or more signatures by the mean of the key identifiers. The tables below are
the results of queries made to that database, where OSes sharing a common signature have
sometimes been regrouped to reduce the size of the tables. Footnotes have been added on
some occasions to comment on certain peculiar behaviours.

Table 12. PassiveTest_TCP_SYN

PassiveTest_TCP_SYN

OS DF TTL WIN TCPecn TCPopts

BEOS 5 N 25512288 M@1460

FreeBSD 2.0.5, 2.1.0 N 6416384 M@1460NW@0NNTNNC.New

FreeBSD 2.1.5, 2.1.6, 2.1.7.1, 2,2,0, 2.2.1, 2.2.2,
2.2.5, 2.2.6, 2.2.7, 2.2.8 Y 6416384 M@1460NW@0NNTNNC.New

FreeBSD 3.0, 3.1, 3.2, 3.3, 3.4, 3.5.1 Y 6416384 M@1460

FreeBSD 4.0, 4.1, 4.1.1,4.2, 4.3 Y 6416384 M@1460

FreeBSD 4.4 Y 6416384 M@1460NW@0NNT

FreeBSD 4.5 Y 6465535 M@1460NW@1NNT 35

FreeBSD 4.6, 4.6.2, 4.7, 4.8 Y 6457344 M@1460NW@0NNT

FreeBSD 5.0, 5.1 Y 6465535 M@1460NW@1NNT

Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 N 64512 M@1460

Linux 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.2.5-15,
2.2.6, 2.2.7, 2.2.8, 2.2.9 Y 6422(MSS) M@1460STNW@0
Linux 2.2.10, 2.2.11, 2.2.12, 2.2.12-20, 2.2.13,
2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22, 2.2.17,
2.2.18, 2.2.19, 2.2.20, 2.2.21, 2.2.22, 2.2.23, 2.2.24 Y 6422(MSS) M@1460STNW@0

Linux 2.2.16 (S.u.S.E) Y 6422(MSS) M@1460STNW@0

Linux 2.2.16 (S.u.S.E) Y 6432767 M@1460STNW@0

Linux 2.2.18 (S.u.S.E) Y 6422(MSS) M@1460STNW@0

Linux 2.2.18 (S.u.S.E) Y 6432767 M@1460STNW@0

Linux 2.2.19 (Debian) Y 6411(MSS) M@1460STNW@0

Linux 2.2.20-idepci Y 6411(MSS) M@1460STNW@0

Linux 2.4.0, 2.4.1, 2.4.2, 2.4.2-2, 2.4.3, 2.4.4, 2.4.4-
4GB, 2.4.5, 2.4.6, 2.4.7, 2.4.8, 2.4.9, 2.4.10, 2.4.11,
2.4.12, 2.4.13, 2.4.14, 2.4.15, 2.4.16, 2.4.17, 2.4.18,
2.4.18-3, 2.4.18-4GB, 2.4.19, 2.4.19-4GB, 2.4.20,
2.4.20-8, 2.4.21-0.13mdk Y 644(MSS) M@1460STNW@0

Linux 2.4.10-4GB Y 644(MSS) M@1460STNW@0 36

Linux 2.4.10-4GB Y 644(MSS) M@1460STNW@1

35 FreeBSD 4.5 initiates a connection with Window size and Window scale values
identical to what FreeBSD 5.0 and 5.1 use (destination port tested for all FreeBSD are
22, 23 and 21)
36 Linux 2.4.10-4GB sends a Window scale of 0 from the telnet client but sends a
Window scale of 1 using the ftp client.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 89

PassiveTest_TCP_SYN

OS DF TTL WIN TCPecn TCPopts

MacOS 7.5.3, 7.5.5, 7.6, 7.6.1, 8.0, 8.1 Y 25516616 M@1460W@0L

MacOS 9.0 N 25532768 M@1460W@0N

MacOS 9.1, 9.2.1, 9.2.2 Y 25532768 M@1460W@0N
MacOS 10.1.0, 10.1.1, 10.1.2, 10.1.3, 10.1.4, 10.1.5,
10.2.1, 10.2.2, 10.2.3, 10.2.4, 10.2.5, 10.2.6 Y 6432768 M@1460NW@0NNT

NetBSD 1.1 N 6416384 M@1460NW@0NNT

NetBSD 1.2, 1.2.1 N 6416384 M@1460NW@0NNT

NetBSD 1.3 , 1.3.1, 1.3.2, 1.3.3 N 6416384 M@1460NW@0NNT

NetBSD 1.4 , 1.4.1, 1.4.2, 1.4.3 N 6416384 M@1460NW@0NNT

NetBSD 1.5, 1.5.1, 1.5.2, 1.5.3 N 6416384 M@1460NW@0NNT

NetBSD 1.6, 1.6.1 N 6416384 M@1460NW@0NNT@0

Netware 4.11, 4.11 sp9 N 12832768 M@1460

Netware 5, 5 sp6a Y 12832768 M@1460

Netware 5.1, 5.1 sp6 Y 12832768 M@1460

Netware 6, 6 sp3 Y 1286144 M@1460W@0NSNN

OpenBSD 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6 N 6416384 M@1460NW@0NNT

OpenBSD 2.7, 2.8 N 6416384 M@1460NNSNW@0NNT

OpenBSD 2.9 Y 6416384 M@1460NNSNW@0NNT

OpenBSD 3.0, 3.1, 3.2, 3.3 Y 6416384 M@1460NNSNW@0NNT

QNX RTP 4 N 648192 M@1460

QNX RTP 6.0 N 648192 M@1459

QNX RTP 6.1, 6.2, 6.2.1 N 6416384 M@1460NW@0NNT

SunOS 5.5, 5.5.1, 5.6, 5.7 Y 2556(MSS) M@1460

SunOS 5.8 Y 6417(MSS) NNSM@1460

SunOS 5.9 Y 6434(MSS) M@1460NNS

SunOS (Intel) 5.8 Y 6432850 NW@1NNTNNSM@1460

Windows 95 Y 328192 M@1460

Windows NT 3.51 standard Y 328192 M@1460

Windows 98, 98 SE Y 1288192 M@1460NNS

Windows NT 4 standard, sp3, sp4, sp6 Y 1288192 M@1460

Windows Millennium standard Y 12816384 M@1460NNS

Windows 2000 standard, sp2, sp3, sp4 Y 12816384 M@1460NNS

Windows XP Home, Professional Y 12816384 M@1460NNS

Windows Net standard Y 12816384 M@1460NNS

Windows 2003 Server standard Y 12816384 M@1460NNS

Table 13. PassiveTest_ARPRequest

PassiveTest_ARPRequest

OS TargetHardwareAddress

BEOS 5 000000000000

FreeBSD 2.0.5, 2.1.0, 2.1.5, 2.1.6, 2.1.7.1, 2.2.0, 2.2.1, 2.2.2, 2.2.5, 2.2.6, 2.2.7, 2.2.8 000000000000

FreeBSD 3.0, 3.1, 3.2, 3.3, 3.4, 3.5.1 000000000000

90 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

PassiveTest_ARPRequest

OS TargetHardwareAddress

FreeBSD 4.0, 4.1, 4.1.1, 4.2, 4.3, 4.4, 4.5 000000000000

FreeBSD 4.6, 4.6.2, 4.7, 4.8 Uninitialized field

FreeBSD 5.0 Uninitialized field

FreeBSD 5.1 000000000000

Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 000000000000

Linux 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.2.5-15, 2.2.6, 2.2.7, 2.2.8, 2.2.9 000000000000

Linux 2.2.10, 2.2.11, 2.2.12, 2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22,
2.2.17, 2.2.18, 2.2.19 000000000000

Linux 2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23, 2.2.24 000000000000

Linux 2.4.0, 2.4.1, 2.4.2, 2.4.2-2, 2.4.3, 2.4.4, 2.4.4-4GB, 2.4.5, 2.4.6, 2.4.7, 2.4.8, 2.4.9 000000000000

Linux 2.4.10, 2.4.10-4GB, 2.4.11, 2.4.12, 2.4.13, 2.4.14, 2.4.15, 2.4.16, 2.4.17, 2.4.18,
2.4.18-3, 2.4.18-4GB,2.4.18-14, 2.4.19, 2.4.19-4GB, 2.4.20, 2.4.20-8, 2.4.21-0.13mdk 000000000000

MacOS 7.5.3, 7.5.5, 7.6, 7.6.1 FFFFFFFFFFFF

MacOS 8.0, 8.1 FFFFFFFFFFFF

MacOS 9.0, 9.1, 9.2.1, 9.2.2 FFFFFFFFFFFF

MacOS 10.1.0, 10.1.1, 10.1.2, 10.1.3, 10.1.4, 10.1.5, 10.2.1, 10.2.2, 10.2.3, 10.2.4, 10.2.5,
10.2.6 000000000000

NetBSD 1.1 000000000000

NetBSD 1.2, 1.2.1 000000000000

NetBSD 1.3 , 1.3.1, 1.3.2, 1.3.3 000000000000

NetBSD 1.4 , 1.4.1, 1.4.2, 1.4.3 000000000000

NetBSD 1.5, 1.5.1, 1.5.2, 1.5.3 000000000000

NetBSD 1.6, 1.6.1 000000000000

Netware 4.11, 4.11 sp9 000000000000

Netware 5, 5 sp6a 000000000000

Netware 5.1, 5.1 sp6 000000000000

Netware 6, 6 sp3 000000000000

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 91

PassiveTest_ARPRequest

OS TargetHardwareAddress

OpenBSD 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9 000000000000

OpenBSD 3.0, 3.1, 3.2, 3.3 000000000000

QNX RTP 4 000000000000

QNX RTP 6.0, 6.1, 6.2, 6.2.1 000000000000

SunOS 5.5, 5.5.1, 5.6, 5.7, 5.8, 5.9 FFFFFFFFFFFF

SunOS (Intel) 5.8 FFFFFFFFFFFF

Windows 95 000000000000

Windows NT 3.51 standard 000000000000

Windows 98, 98 SE 000000000000

Windows NT 4 standard, sp3, sp4, sp6 000000000000

Windows Millennium standard 000000000000

Windows 2000 standard, sp2, sp3, sp4 000000000000

Windows XP Home, Professional 000000000000

Windows Net standard 000000000000

Windows 2003 Server standard 000000000000

Table 14. PassiveTest_TCP_ISN

PassiveTest_TCP_ISN 37

OS class val gcdmin gcdmax stdmin stdmax

BEOS 5 RI -1 1 1 1000892 2444429

FreeBSD 2.0.5, 2.1.0, 2.1.5, 2.1.6, 2.1.7.1 64K -1 -1 -1 -1 -1

FreeBSD 2.2.0 RI -1 1 2 3929 53128

FreeBSD 2.2.1 RI -1 1 1 4882 57589

FreeBSD 2.2.2 RI -1 1 2 3207 52255

FreeBSD 2.2.5 RI -1 1 3 6346 64159

FreeBSD 2.2.6 RI -1 1 1 6910 59577

FreeBSD 2.2.7 RI -1 1 2 6921 63422

FreeBSD 2.2.8 RI -1 1 2 5568 60729

FreeBSD 3.0 RI -1 1 2 6210 59938

FreeBSD 3.1 RI -1 1 5 5559 62277

37 The ranges for the gcd and std were estimated based on a limited number of samples
(60 samples of 6 packets)

92 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

PassiveTest_TCP_ISN 37

OS class val gcdmin gcdmax stdmin stdmax

FreeBSD 3.2 RI -1 1 2 8698 63908

FreeBSD 3.3 RI -1 1 2 7282 62903

FreeBSD 3.4 RI -1 1 2 7262 67257

FreeBSD 3.5.1 RI -1 1 3 6697 63850

FreeBSD 4.0 RI -1 1 2 7260 62624

FreeBSD 4.1 RI -1 1 2 5679 61199

FreeBSD 4.1.1 RI -1 1 2 6355 61643

FreeBSD 4.2 RI -1 1 3 10688 154539

FreeBSD 4.3, 4.4, 4.5, 4.6, 4.6.2, 4.7, 4.8, 5.0, 5.1 TR -1 -1 -1 -1 -1

Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 TR -1 -1 -1 -1 -1

Linux 2.2.0 RI -1 1 2 635711 6294505

Linux 2.2.1 RI -1 1 2 844449 6327873

Linux 2.2.2 RI -1 1 2 442839 5885217

Linux 2.2.3 RI -1 1 2 303081 5481445

Linux 2.2.4 RI -1 1 3 1066440 5214589

Linux 2.2.5 RI -1 1 2 1070076 6642435

Linux 2.2.5-15 RI -1 1 1 659554 5742076

Linux 2.2.6 RI -1 1 1 1187507 5427882

Linux 2.2.7 RI -1 1 3 302863 5946898

Linux 2.2.8 RI -1 1 1 1036204 5794169

Linux 2.2.9 RI -1 1 2 535482 6612445

Linux 2.2.10 RI -1 1 2 935261 5573627

Linux 2.2.11 RI -1 1 3 693463 5549501

Linux 2.2.12 RI -1 1 1 636419 6208814

Linux 2.2.12-20 RI -1 1 9 198530 5763325

Linux 2.2.13 RI -1 1 3 357923 6146175

Linux 2.2.14 RI -1 1 2 440362 5341550

Linux 2.2.14-5 RI -1 1 4 862625 6431236

Linux 2.2.15 RI -1 1 3 1094033 6688537

Linux 2.2.16 RI -1 1 3 418447 6335311

Linux 2.2.16-22 RI -1 1 1 678021 5844348

Linux 2.2.17 RI -1 1 2 790658 5953259

Linux 2.2.18 RI -1 1 2 885130 6038753

Linux 2.2.19 RI -1 1 1 648203 6106031

Linux 2.2.20 RI -1 1 3 678499 6384234

Linux 2.2.20-idepci RI -1 1 2 643181 6516181

Linux 2.2.21 RI -1 1 2 807928 6511153

Linux 2.2.22 RI -1 1 2 1365318 5387254

Linux 2.2.23 RI -1 1 1 938740 5526417

Linux 2.2.24 RI -1 1 4 624259 5624091

Linux 2.4.0 RI -1 1 3 1145706 5697069

Linux 2.4.1 RI -1 1 2 686064 5177326

Linux 2.4.2 RI -1 1 2 814985 5910699

Linux 2.4.2-2 RI -1 1 3 662334 6724921

Linux 2.4.3 RI -1 1 2 1133825 5588171

Linux 2.4.4 RI -1 1 2 747922 5608453

Linux 2.4.4-4GB RI -1 1 3 633121 5372215

Linux 2.4.5 RI -1 1 2 912120 5648993

Linux 2.4.6 RI -1 1 2 872446 6468744

Linux 2.4.7 RI -1 1 2 885387 5914056

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 93

PassiveTest_TCP_ISN 37

OS class val gcdmin gcdmax stdmin stdmax

Linux 2.4.8 RI -1 1 3 889712 6079950

Linux 2.4.9 RI -1 1 2 761024 5587906

Linux 2.4.10 RI -1 1 2 1101187 5697998

Linux 2.4.10-4GB RI -1 1 3 956986 5914896

Linux 2.4.11 RI -1 1 2 740901 5793945

Linux 2.4.12 RI -1 1 3 1218711 5928584

Linux 2.4.13 RI -1 1 2 1038365 6119539

Linux 2.4.14 RI -1 1 1 1271446 6192395

Linux 2.4.15 RI -1 1 2 1259864 5706854

Linux 2.4.16 RI -1 1 2 969006 6284941

Linux 2.4.17 RI -1 1 3 711902 5892498

Linux 2.4.18 RI -1 1 5 223250 5586006

Linux 2.4.18-14 RI -1 1 2 992302 5690466

Linux 2.4.18-3 RI -1 1 2 899907 5863692

Linux 2.4.18-4GB RI -1 1 3 1040789 6233509

Linux 2.4.19 RI -1 1 3 962273 5899243

Linux 2.4.19-4GB RI -1 1 4 583168 5255110

Linux 2.4.20 RI -1 1 2 705151 5996601

Linux 2.4.20-8 RI -1 1 2 872000 6366992

Linux 2.4.21-0.13mdk RI -1 1 2 1018968 6074813

MacOS 7.6, 7.6.1, 8.0, 8.1 64K -1 -1 -1 -1 -1

MacOS 9.0 RI -1 1 2 6011 79545

MacOS 9.1 RI -1 1 1 47162 81852

MacOS 9.2.1 RI -1 1 1 4607 82016

MacOS 9.2.2 RI -1 1 1 2996 76299

MacOS 10.1.0, 10.1.1, 10.1.2, 10.1.3, 10.1.4, 10.1.5, 10.2.1,
10.2.2, 10.2.3, 10.2.4, 10.2.5, 10.2.6 TR -1 -1 -1 -1 -1

NetBSD 1.1, 1.2.1 64K -1 -1 -1 -1 -1

NetBSD 1.3 RI -1 1 2 39737 244693

NetBSD 1.3.1 RI -1 1 4 23505 308482

NetBSD 1.3.2 RI -1 1 2 30144 243626

NetBSD 1.3.3 RI -1 1 2 36169 244680

NetBSD 1.4 RI -1 1 1 3564039 16816537

NetBSD 1.4.1 RI -1 1 2 2442106 17759148

NetBSD 1.4.2 RI -1 1 2 2818277 17142013

NetBSD 1.4.3 RI -1 1 4 1502736 19181040

NetBSD 1.5 RI -1 1 2 866496 18067551

NetBSD 1.5.1 RI -1 1 2 2396436 16758667

NetBSD 1.5.2 RI -1 1 2 1675020 16614205

NetBSD 1.5.3 RI -1 1 2 2740961 18160982

NetBSD 1.6 RI -1 1 2 3287174 16747707

NetBSD 1.6.1 RI -1 1 1 3757514 18888043

94 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

PassiveTest_TCP_ISN 37

OS class val gcdmin gcdmax stdmin stdmax

Netware 4.11 38 TD -1 16 144 0 1

Netware 4.11 sp9 RI -1 1 2 1077890 6767846

Netware 5 TD -1 16 160 0 7

Netware 5 sp6a RI -1 1 2 617559 8493698

Netware 5.1 RI -1 1 2 942034 13029814

Netware 5.1 sp6 TR -1 -1 -1 -1 -1

Netware 6 RI -1 1 2 1106089 6497481

Netware 6 sp3 TR -1 -1 -1 -1 -1

OpenBSD 2.0 RI -1 1 2 6109 43773

OpenBSD 2.1 RI -1 1 2 9275 40209

OpenBSD 2.2 RI -1 1 4 6646 53004

OpenBSD 2.3 RI -1 1 2 4214 39610

OpenBSD 2.4 RI -1 1 2 7882 40040

OpenBSD 2.5 RI -1 1 2 8002 40864

OpenBSD 2.6 RI -1 1 2 13909 81834

OpenBSD 2.7 RI -1 1 2 7323 79816

OpenBSD 2.8 RI -1 1 2 19145 109835

OpenBSD 2.9, 3.0, 3.1, 3.2, 3.3 TR -1 -1 -1 -1 -1

QNX RTP 6.1 RI -1 1 2 53769 264995

QNX RTP 6.2 RI -1 1 1 1581550 15103455

QNX RTP 6.2.1 RI -1 1 3 1898378 15101966

SunOS 5.5 RI -1 1 2 8607 47944

SunOS 5.5.1 RI -1 1 1 10580 52878

SunOS 5.6 RI -1 1 2 11790 51830

SunOS 5.7 RI -1 1 2 13757 48936

SunOS 5.8 RI -1 1 2 11240 79035

SunOS 5.9 RI -1 1 2 15877 86686

SunOS (Intel) 5.8 39 RI -1 1 3 9599 1526560

Windows 95 TD -1 1 2 1 31

Windows 98 TD -1 1 2 0 3

Windows 98 SE TD -1 1 3 5 141

Windows NT 3.51 standard TD -1 1 3 0 306

Windows NT 4 standard TD -1 1 1 0 39

Windows NT 4 sp3 TD -1 1 10 0 29

Windows NT 4 sp4 TD -1 1 2 1 5

Windows NT 4 sp6 TD -1 1 1 2 8

Windows NT 4 sp6 40 RI -1 1 1 51195 51196

Windows Millennium standard RI -1 1 2 3834 78789

38 Service packs of Novell systems appear to influence the ISN generation. For
Netware versions 4.11 and 5, the ISN class determined by the prototype went from
Time-Dependent (TD) to Random Incremental (RI) when the service pack was added.
Similarly, the class changed from RI to “true random” (TR) when a service pack was
installed on Netware 5.1 and 6.
39 ISN produced by Intel based SunOS may have a greater variability than those of
Sparc based SunOS.
40 56 out of 60 samples produced a Time-Dependent (TD) signature for Windows NT 4
sp6. The Random Incremental (RI) signature is due to 4 samples, two with a std of
51195 and two with a std of 51196.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 95

PassiveTest_TCP_ISN 37

OS class val gcdmin gcdmax stdmin stdmax

Windows 2000 Server sp2 RI -1 1 2 1253 16583

Windows 2000 Server standard RI -1 1 2 2612 24155

Windows 2000 sp2 RI -1 1 2 3233 23679

Windows 2000 standard RI -1 1 2 1810 20529

Windows 2000 sp3 RI -1 1 1 3240 26206

Windows 2000 sp4 RI -1 1 2 1754 16946

Windows XP Home RI -1 1 1 3253 17644

Windows XP Professional RI -1 1 1 3770 12943

Windows Net standard TR -1 -1 -1 -1 -1

Windows 2003 Server standard TR -1 -1 -1 -1 -1

Table 15. PassiveTest_Echo_IP_ID (Subtest of PassiveTest_IP_ID)

PassiveTest_Echo_IP_ID (Subtest of PassiveTest_IP_ID)

ResultOSKey IPIDEcho Protocol PacketType StimulusProtocol StimulusPacketType

QNX RTP 4 Y 1 0:0 1 8:0

QNX RTP 6.0 Y 1 0:0 1 8:0

Table 16. PassiveTest_NULL_IP_ID (Subtest of PassiveTest_IP_ID)

PassiveTest_NULL_IP_ID (Subtest of PassiveTest_IP_ID)

ResultOSKey NullIPID Protocol PacketType

Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 N 1 0:0

Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 Y 1 0:0

Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 N 1 14:0

Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 Y 1 14:0

Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 N 1 3:3

Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 Y 1 3:3

Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 N 1 8:0

Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 Y 1 8:0

Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 N 17 none

Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 Y 17 none

Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 N 6 A

Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 N 6 AF

Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 N 6 AP

Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 N 6 AR

Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 Y 6 AR

Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 N 6 R

Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 Y 6 R

Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 N 6 S

Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 Y 6 S

Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 N 6 SA

Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 Y 6 SA

96 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

PassiveTest_NULL_IP_ID (Subtest of PassiveTest_IP_ID)

ResultOSKey NullIPID Protocol PacketType

Linux 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.2.5-15, 2.2.6, 2.2.7, 2.2.8, 2.2.9, 2.2.10,
2.2.11, 2.2.12, 2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22, 2.2.17, 2.2.18,
2.2.19, 2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23, 2.2.24 N 1 0:0

Linux 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.2.5-15, 2.2.6, 2.2.7, 2.2.8, 2.2.9, 2.2.10,
2.2.11, 2.2.12, 2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22, 2.2.17, 2.2.18,
2.2.19, 2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23, 2.2.24 Y 1 0:0

Linux 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.2.5-15, 2.2.6, 2.2.7, 2.2.8, 2.2.9, 2.2.10,
2.2.11, 2.2.12, 2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22, 2.2.17, 2.2.18,
2.2.19, 2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23, 2.2.24 N 1 14:0

Linux 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.2.5-15, 2.2.6, 2.2.7, 2.2.8, 2.2.9, 2.2.10,
2.2.11, 2.2.12, 2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22, 2.2.17, 2.2.18,
2.2.19, 2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23, 2.2.24 Y 1 14:0

Linux 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.2.5-15, 2.2.6, 2.2.7, 2.2.8, 2.2.9, 2.2.10,
2.2.11, 2.2.12, 2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22, 2.2.17, 2.2.18,
2.2.19, 2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23, 2.2.24 N 1 3:3

Linux 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.2.5-15, 2.2.6, 2.2.7, 2.2.8, 2.2.9, 2.2.10,
2.2.11, 2.2.12, 2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22, 2.2.17, 2.2.18,
2.2.19, 2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23, 2.2.24 Y 1 3:3

Linux 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.2.5-15, 2.2.6, 2.2.7, 2.2.8, 2.2.9, 2.2.10,
2.2.11, 2.2.12, 2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22, 2.2.17, 2.2.18,
2.2.19, 2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23, 2.2.24 N 1 8:0

Linux 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.2.5-15, 2.2.6, 2.2.7, 2.2.8, 2.2.9, 2.2.10,
2.2.11, 2.2.12, 2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22, 2.2.17, 2.2.18,
2.2.19, 2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23, 2.2.24 Y 1 8:0

Linux 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.2.5-15, 2.2.6, 2.2.7, 2.2.8, 2.2.9, 2.2.10,
2.2.11, 2.2.12, 2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22, 2.2.17, 2.2.18,
2.2.19, 2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23, 2.2.24 N 17 none

Linux 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.2.5-15, 2.2.6, 2.2.7, 2.2.8, 2.2.9, 2.2.10,
2.2.11, 2.2.12, 2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22, 2.2.17, 2.2.18,
2.2.19, 2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23, 2.2.24 Y 17 none

Linux 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.2.5-15, 2.2.6, 2.2.7, 2.2.8, 2.2.9, 2.2.10,
2.2.11, 2.2.12, 2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22, 2.2.17, 2.2.18,
2.2.19, 2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23, 2.2.24 N 6 A

Linux 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.2.5-15, 2.2.6, 2.2.7, 2.2.8, 2.2.9, 2.2.10,
2.2.11, 2.2.12, 2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22, 2.2.17, 2.2.18,
2.2.19, 2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23, 2.2.24 N 6 AF

Linux 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.2.5-15, 2.2.6, 2.2.7, 2.2.8, 2.2.9, 2.2.10,
2.2.11, 2.2.12, 2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22, 2.2.17, 2.2.18,
2.2.19, 2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23, 2.2.24 N 6 AFP

Linux 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.2.5-15, 2.2.6, 2.2.7, 2.2.8, 2.2.9, 2.2.10,
2.2.11, 2.2.12, 2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22, 2.2.17, 2.2.18,
2.2.19, 2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23, 2.2.24 N 6 AP

Linux 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.2.5-15, 2.2.6, 2.2.7, 2.2.8, 2.2.9, 2.2.10,
2.2.11, 2.2.12, 2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22, 2.2.17, 2.2.18,
2.2.19, 2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23, 2.2.24 N 6 AR

Linux 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.2.5-15, 2.2.6, 2.2.7, 2.2.8, 2.2.9, 2.2.10,
2.2.11, 2.2.12, 2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22, 2.2.17, 2.2.18,
2.2.19, 2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23, 2.2.24 Y 6 AR

Linux 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.2.5-15, 2.2.6, 2.2.7, 2.2.8, 2.2.9, 2.2.10,
2.2.11, 2.2.12, 2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22, 2.2.17, 2.2.18,
2.2.19, 2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23, 2.2.24 N 6 R

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 97

PassiveTest_NULL_IP_ID (Subtest of PassiveTest_IP_ID)

ResultOSKey NullIPID Protocol PacketType

Linux 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.2.5-15, 2.2.6, 2.2.7, 2.2.8, 2.2.9, 2.2.10,
2.2.11, 2.2.12, 2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22, 2.2.17, 2.2.18,
2.2.19, 2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23, 2.2.24 Y 6 R

Linux 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.2.5-15, 2.2.6, 2.2.7, 2.2.8, 2.2.9, 2.2.10,
2.2.11, 2.2.12, 2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22, 2.2.17, 2.2.18,
2.2.19, 2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23, 2.2.24 N 6 S

Linux 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.2.5-15, 2.2.6, 2.2.7, 2.2.8, 2.2.9, 2.2.10,
2.2.11, 2.2.12, 2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22, 2.2.17, 2.2.18,
2.2.19, 2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23, 2.2.24 Y 6 S

Linux 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.2.5-15, 2.2.6, 2.2.7, 2.2.8, 2.2.9, 2.2.10,
2.2.11, 2.2.12, 2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22, 2.2.17, 2.2.18,
2.2.19, 2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23, 2.2.24 N 6 SA

Linux 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.2.5-15, 2.2.6, 2.2.7, 2.2.8, 2.2.9, 2.2.10,
2.2.11, 2.2.12, 2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22, 2.2.17, 2.2.18,
2.2.19, 2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23, 2.2.24 Y 6 SA

Linux 2.4.0, 2.4.1, 2.4.2, 2.4.3 Y 1 0:0

Linux 2.4.0, 2.4.1, 2.4.2, 2.4.3 Y 1 14:0

Linux 2.4.0, 2.4.1, 2.4.2, 2.4.3 Y 1 3:3

Linux 2.4.0, 2.4.1, 2.4.2, 2.4.3 Y 1 8:0

Linux 2.4.0, 2.4.1, 2.4.2, 2.4.3 N 17 none

Linux 2.4.0, 2.4.1, 2.4.2, 2.4.3 Y 17 none

Linux 2.4.0, 2.4.1, 2.4.2, 2.4.3 Y 6 A

Linux 2.4.0, 2.4.1, 2.4.2, 2.4.3 Y 6 AF

Linux 2.4.0, 2.4.1, 2.4.2, 2.4.3 Y 6 AFP

Linux 2.4.0, 2.4.1, 2.4.2, 2.4.3 Y 6 AP

Linux 2.4.0, 2.4.1, 2.4.2, 2.4.3 Y 6 AR

Linux 2.4.0, 2.4.1, 2.4.2, 2.4.3 Y 6 R

Linux 2.4.0, 2.4.1, 2.4.2, 2.4.3 Y 6 S

Linux 2.4.0, 2.4.1, 2.4.2, 2.4.3 Y 6 SA

Linux 2.4.2-2 Y 1 0:0

Linux 2.4.2-2 Y 1 14:0

Linux 2.4.2-2 N 1 3:3

Linux 2.4.2-2 y 1 3:3

Linux 2.4.2-2 Y 1 8:0

Linux 2.4.2-2 N 17 none

Linux 2.4.2-2 Y 17 none

Linux 2.4.2-2 N 6 A

Linux 2.4.2-2 41 Y 6 A

Linux 2.4.2-2 N 6 AF

Linux 2.4.2-2 N 6 AFP

Linux 2.4.2-2 N 6 AP

41 Linux 2.4.2-2 behaves differently than Linux 2.4.2. Linux 2.4.2-2 has two signatures
for a TCP ACK packet: one with a null IPID and one with a non zero IP ID. This
system sends a non zero IPID in a TCP ACK segment, unless this TCP ACK segment is
the response to a FIN/ACK packet.

98 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

PassiveTest_NULL_IP_ID (Subtest of PassiveTest_IP_ID)

ResultOSKey NullIPID Protocol PacketType

Linux 2.4.2-2 Y 6 AR

Linux 2.4.2-2 Y 6 R

Linux 2.4.2-2 N 6 S

Linux 2.4.2-2 Y 6 SA

Linux 2.4.4, 2.4.4-4GB Y 1 0:0

Linux 2.4.4, 2.4.4-4GB Y 1 14:0

Linux 2.4.4, 2.4.4-4GB N 1 3:3

Linux 2.4.4, 2.4.4-4GB 42 Y 1 3:3

Linux 2.4.4, 2.4.4-4GB Y 1 8:0

Linux 2.4.4, 2.4.4-4GB N 17 none

Linux 2.4.4, 2.4.4-4GB Y 17 none

Linux 2.4.4, 2.4.4-4GB N 6 A

Linux 2.4.4, 2.4.4-4GB N 6 AF

Linux 2.4.4, 2.4.4-4GB N 6 AFP

Linux 2.4.4, 2.4.4-4GB N 6 AP

Linux 2.4.4, 2.4.4-4GB Y 6 AR

Linux 2.4.4, 2.4.4-4GB Y 6 R

Linux 2.4.4, 2.4.4-4GB N 6 S

Linux 2.4.4, 2.4.4-4GB Y 6 SA

Linux 2.4.5, 2.4.6, 2.4.7, 2.4.7-RH, 2.4.8, 2.4.9, 2.4.10, 2.4.10-4GB, 2.4.11, 2.4.12, 2.4.13,
2.4.14, 2.4.15, 2.4.16, 2.4.17, 2.4.18, 2.4.18-3, 2.4.18-4GB, 2.4.18-14, 2.4.19, 2.4.20,
2.4.20-8, 2.4.21-0.13mdk N 1 0:0

Linux 2.4.5, 2.4.6, 2.4.7, 2.4.7-RH, 2.4.8, 2.4.9, 2.4.10, 2.4.10-4GB, 2.4.11, 2.4.12, 2.4.13,
2.4.14, 2.4.15, 2.4.16, 2.4.17, 2.4.18, 2.4.18-3, 2.4.18-4GB, 2.4.18-14, 2.4.19, 2.4.20,
2.4.20-8, 2.4.21-0.13mdk N 1 14:0

Linux 2.4.5, 2.4.6, 2.4.7, 2.4.7-RH, 2.4.8, 2.4.9, 2.4.10, 2.4.10-4GB, 2.4.11, 2.4.12, 2.4.13,
2.4.14, 2.4.15, 2.4.16, 2.4.17, 2.4.18, 2.4.18-3, 2.4.18-4GB, 2.4.18-14, 2.4.19, 2.4.20,
2.4.20-8, 2.4.21-0.13mdk N 1 3:3

Linux 2.4.5, 2.4.6, 2.4.7, 2.4.7-RH, 2.4.8, 2.4.9, 2.4.10, 2.4.10-4GB, 2.4.11, 2.4.12, 2.4.13,
2.4.14, 2.4.15, 2.4.16, 2.4.17, 2.4.18, 2.4.18-3, 2.4.18-4GB, 2.4.18-14, 2.4.19, 2.4.20,
2.4.20-8, 2.4.21-0.13mdk Y 1 8:0

Linux 2.4.5, 2.4.6, 2.4.7, 2.4.7-RH, 2.4.8, 2.4.9, 2.4.10, 2.4.10-4GB, 2.4.11, 2.4.12, 2.4.13,
2.4.14, 2.4.15, 2.4.16, 2.4.17, 2.4.18, 2.4.18-3, 2.4.18-4GB, 2.4.18-14, 2.4.19, 2.4.20,
2.4.20-8, 2.4.21-0.13mdk N 17 none

Linux 2.4.5, 2.4.6, 2.4.7, 2.4.7-RH, 2.4.8, 2.4.9, 2.4.10, 2.4.10-4GB, 2.4.11, 2.4.12, 2.4.13,
2.4.14, 2.4.15, 2.4.16, 2.4.17, 2.4.18, 2.4.18-3, 2.4.18-4GB, 2.4.18-14, 2.4.19, 2.4.20,
2.4.20-8, 2.4.21-0.13mdk Y 17 none

42 First packet after reboot. It appears that the IP ID of these kernels is incremantal for
ICMP error messages (at least for port unreachable error messages). For these
messages, the IP ID is globally incremented (e.g. 0x0000, 0x0100, 0x0200, etc) no
matter what the destination is. The author has not seen the counter begin at 0 for TCP
or UDP packets on reboot. Kernels 2.4.0-2.4.3 and 2.4.5-2.4.21 have a different
behaviour. Kernels 2.4.0-2.4.3 use a null IP ID for all icmp port unreachable messages.
Kernel 2.4.5-2.4.21 increment by 0x0001 instead of 0x0100 for icmp port unreach and
do not appear to start with a zero value on reboot.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 99

PassiveTest_NULL_IP_ID (Subtest of PassiveTest_IP_ID)

ResultOSKey NullIPID Protocol PacketType

Linux 2.4.5, 2.4.6, 2.4.7, 2.4.7-RH, 2.4.8, 2.4.9, 2.4.10, 2.4.10-4GB, 2.4.11, 2.4.12, 2.4.13,
2.4.14, 2.4.15, 2.4.16, 2.4.17, 2.4.18, 2.4.18-3, 2.4.18-4GB, 2.4.18-14, 2.4.19, 2.4.20,
2.4.20-8, 2.4.21-0.13mdk N 6 A

Linux 2.4.5, 2.4.6, 2.4.7, 2.4.7-RH, 2.4.8, 2.4.9, 2.4.10, 2.4.10-4GB, 2.4.11, 2.4.12, 2.4.13,
2.4.14, 2.4.15, 2.4.16, 2.4.17, 2.4.18, 2.4.18-3, 2.4.18-4GB, 2.4.18-14, 2.4.19, 2.4.20,
2.4.20-8, 2.4.21-0.13mdk 43 Y 6 A

Linux 2.4.5, 2.4.6, 2.4.7, 2.4.7-RH, 2.4.8, 2.4.9, 2.4.10, 2.4.10-4GB, 2.4.11, 2.4.12, 2.4.13,
2.4.14, 2.4.15, 2.4.16, 2.4.17, 2.4.18, 2.4.18-3, 2.4.18-4GB, 2.4.18-14, 2.4.19, 2.4.20,
2.4.20-8, 2.4.21-0.13mdk N 6 AF

Linux 2.4.5, 2.4.6, 2.4.7, 2.4.7-RH, 2.4.8, 2.4.9, 2.4.10, 2.4.10-4GB, 2.4.11, 2.4.12, 2.4.13,
2.4.14, 2.4.15, 2.4.16, 2.4.17, 2.4.18, 2.4.18-3, 2.4.18-4GB, 2.4.18-14, 2.4.19, 2.4.20,
2.4.20-8, 2.4.21-0.13mdk N 6 AFP

Linux 2.4.5, 2.4.6, 2.4.7, 2.4.7-RH, 2.4.8, 2.4.9, 2.4.10, 2.4.10-4GB, 2.4.11, 2.4.12, 2.4.13,
2.4.14, 2.4.15, 2.4.16, 2.4.17, 2.4.18, 2.4.18-3, 2.4.18-4GB, 2.4.18-14, 2.4.19, 2.4.20,
2.4.20-8, 2.4.21-0.13mdk N 6 AP

Linux 2.4.5, 2.4.6, 2.4.7, 2.4.7-RH, 2.4.8, 2.4.9, 2.4.10, 2.4.10-4GB, 2.4.11, 2.4.12, 2.4.13,
2.4.14, 2.4.15, 2.4.16, 2.4.17, 2.4.18, 2.4.18-3, 2.4.18-4GB, 2.4.18-14, 2.4.19, 2.4.20,
2.4.20-8, 2.4.21-0.13mdk Y 6 AR

Linux 2.4.5, 2.4.6, 2.4.7, 2.4.7-RH, 2.4.8, 2.4.9, 2.4.10, 2.4.10-4GB, 2.4.11, 2.4.12, 2.4.13,
2.4.14, 2.4.15, 2.4.16, 2.4.17, 2.4.18, 2.4.18-3, 2.4.18-4GB, 2.4.18-14, 2.4.19, 2.4.20,
2.4.20-8, 2.4.21-0.13mdk Y 6 R

Linux 2.4.5, 2.4.6, 2.4.7, 2.4.7-RH, 2.4.8, 2.4.9, 2.4.10, 2.4.10-4GB, 2.4.11, 2.4.12, 2.4.13,
2.4.14, 2.4.15, 2.4.16, 2.4.17, 2.4.18, 2.4.18-3, 2.4.18-4GB, 2.4.18-14, 2.4.19, 2.4.20,
2.4.20-8, 2.4.21-0.13mdk N 6 S

Linux 2.4.5, 2.4.6, 2.4.7, 2.4.7-RH, 2.4.8, 2.4.9, 2.4.10, 2.4.10-4GB, 2.4.11, 2.4.12, 2.4.13,
2.4.14, 2.4.15, 2.4.16, 2.4.17, 2.4.18, 2.4.18-3, 2.4.18-4GB, 2.4.18-14, 2.4.19, 2.4.20,
2.4.20-8, 2.4.21-0.13mdk Y 6 SA

Linux 2.4.19-4GB N 1 0:0

Linux 2.4.19-4GB Y 1 0:0

Linux 2.4.19-4GB N 1 14:0

Linux 2.4.19-4GB Y 1 14:0

Linux 2.4.19-4GB N 1 3:3

Linux 2.4.19-4GB Y 1 3:3

Linux 2.4.19-4GB N 1 8:0

Linux 2.4.19-4GB Y 1 8:0

Linux 2.4.19-4GB N 17 none

Linux 2.4.19-4GB Y 17 none

Linux 2.4.19-4GB N 6 A

Linux 2.4.19-4GB N 6 AF

Linux 2.4.19-4GB N 6 AP

Linux 2.4.19-4GB N 6 AR

Linux 2.4.19-4GB Y 6 AR

Linux 2.4.19-4GB N 6 R

Linux 2.4.19-4GB Y 6 R

Linux 2.4.19-4GB N 6 S

43 These systems sometimes send a null IPID in a TCP ACK packet transmitted in
response to a FIN/ACK packet.

100 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

PassiveTest_NULL_IP_ID (Subtest of PassiveTest_IP_ID)

ResultOSKey NullIPID Protocol PacketType

Linux 2.4.19-4GB Y 6 S

Linux 2.4.19-4GB N 6 SA

Linux 2.4.19-4GB Y 6 SA

Table 17. PassiveTest_IP_ID

PassiveTest_IP_ID

OS IPIDClass Protocol

FreeBSD 2.0.5, 2.1.0, 2.1.5, 2.1.6, 2.1.7.1, 2.2.0, 2.2.1, 2.2.2, 2.2.5, 2.2.6, 2.2.7, 2.2.8 I-SI (or I) -1

FreeBSD 2.0.5, 2.1.0, 2.1.5, 2.1.6, 2.1.7.1, 2.2.0, 2.2.1, 2.2.2, 2.2.5, 2.2.6, 2.2.7, 2.2.8 I-SI (or I) 1

FreeBSD 2.0.5, 2.1.0, 2.1.5, 2.1.6, 2.1.7.1, 2.2.0, 2.2.1, 2.2.2, 2.2.5, 2.2.6, 2.2.7, 2.2.8 I-SI (or I) 6

FreeBSD 2.0.5, 2.1.0, 2.1.5, 2.1.6, 2.1.7.1, 2.2.0, 2.2.1, 2.2.2, 2.2.5, 2.2.6, 2.2.7, 2.2.8 I-SI (or I) 17

FreeBSD 3.0, 3.1, 3.2, 3.3, 3.4, 3.5.1 I-SI (or I) -1

FreeBSD 3.0, 3.1, 3.2, 3.3, 3.4, 3.5.1 I-SI (or I) 1

FreeBSD 3.0, 3.1, 3.2, 3.3, 3.4, 3.5.1 I-SI (or I) 6

FreeBSD 3.0, 3.1, 3.2, 3.3, 3.4, 3.5.1 I-SI (or I) 17

FreeBSD 4.0, 4.1, 4.1.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.6.2, 4.7, 4.8, 5.0, 5.1 I-SI (or I) -1

FreeBSD 4.0, 4.1, 4.1.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.6.2, 4.7, 4.8, 5.0, 5.1 I-SI (or I) 1

FreeBSD 4.0, 4.1, 4.1.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.6.2, 4.7, 4.8, 5.0, 5.1 I-SI (or I) 6

FreeBSD 4.0, 4.1, 4.1.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.6.2, 4.7, 4.8, 5.0, 5.1 I-SI (or I) 17

Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 I-SI (or I) -1

Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 I-SI (or I) 1

Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 I-SI (or I) 6

Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 I-SI (or I) 17

Linux 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.2.5-15, 2.2.6, 2.2.7, 2.2.8, 2.2.9, 2.2.10, 2.2.11,
2.2.12, 2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22, 2.2.17, 2.2.18, 2.2.19,
2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23, 2.2.24 I-SI (or I) -1

Linux 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.2.5-15, 2.2.6, 2.2.7, 2.2.8, 2.2.9, 2.2.10, 2.2.11,
2.2.12, 2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22, 2.2.17, 2.2.18, 2.2.19,
2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23, 2.2.24 I-SI (or I) 1

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 101

PassiveTest_IP_ID

OS IPIDClass Protocol

Linux 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.2.5-15, 2.2.6, 2.2.7, 2.2.8, 2.2.9, 2.2.10, 2.2.11,
2.2.12, 2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22, 2.2.17, 2.2.18, 2.2.19,
2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23, 2.2.24 I-SI (or I) 6

Linux 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.2.5-15, 2.2.6, 2.2.7, 2.2.8, 2.2.9, 2.2.10, 2.2.11,
2.2.12, 2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22, 2.2.17, 2.2.18, 2.2.19,
2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23, 2.2.24 I-SI (or I) 17

Linux 2.4.0, 2.4.1, 2.4.2, 2.4.3 44 BI-SD (or BI) 17

Linux 2.4.2-2, 2.4.4, 2.4.4-4GB I-SD (or I) -1

Linux 2.4.2-2, 2.4.4, 2.4.4-4GB I-SD (or I) 6

Linux 2.4.2-2, 2.4.4, 2.4.4-4GB I-SD (or I) 17

Linux 2.4.5, 2.4.6, 2.4.7, 2.4.8, 2.4.9, 2.4.10, 2.4.10-4GB, 2.4.11, 2.4.12, 2.4.13, 2.4.14, 2.4.15,
2.4.16, 2.4.17, 2.4.18, 2.4.18-3, 2.4.18-4GB, 2.4.18-14, 2.4.19, 2.4.20, 2.4.20-8, 2.4.21-0.13mdk I-SD (or I) -1

Linux 2.4.5, 2.4.6, 2.4.7, 2.4.8, 2.4.9, 2.4.10, 2.4.10-4GB, 2.4.11, 2.4.12, 2.4.13, 2.4.14, 2.4.15,
2.4.16, 2.4.17, 2.4.18, 2.4.18-3, 2.4.18-4GB, 2.4.18-14, 2.4.19, 2.4.20, 2.4.20-8, 2.4.21-0.13mdk I-SD (or I) 1

Linux 2.4.5, 2.4.6, 2.4.7, 2.4.8, 2.4.9, 2.4.10, 2.4.10-4GB, 2.4.11, 2.4.12, 2.4.13, 2.4.14, 2.4.15,
2.4.16, 2.4.17, 2.4.18, 2.4.18-3, 2.4.18-4GB, 2.4.18-14, 2.4.19, 2.4.20, 2.4.20-8, 2.4.21-0.13mdk I-SD (or I) 6

Linux 2.4.5, 2.4.6, 2.4.7, 2.4.8, 2.4.9, 2.4.10, 2.4.10-4GB, 2.4.11, 2.4.12, 2.4.13, 2.4.14, 2.4.15,
2.4.16, 2.4.17, 2.4.18, 2.4.18-3, 2.4.18-4GB, 2.4.18-14, 2.4.19, 2.4.20, 2.4.20-8, 2.4.21-0.13mdk I-SD (or I) 17

Linux 2.4.19-4GB 45 I-SI (or I) -1

Linux 2.4.19-4GB I-SI (or I) 1

Linux 2.4.19-4GB I-SI (or I) 6

Linux 2.4.19-4GB I-SI (or I) 17

MacOS 7.5.3, 7.5.5, 7.6, 7.6.1, 8.0, 8.1, 9.2.2 46 I-SD (or I-SI or I) -1

MacOS 7.5.3, 7.5.5, 7.6, 7.6.1, 8.0, 8.1, 9.2.2 I-SD (or I-SI or I) 1

44 Linux 2.4.0 to 2.4.3 have a null IPID otherwise
45 Linux 2.4.19-4GB is the kernel of S.u.S.E 8.1. It distinguishes itself from other
Linux kernels by incrementing the IP ID regardless of the socket.
46 MacOS 7.5.3, 7.5.5, 7.6, 7.6.1, 8.0, 8.1, 9.2.2 get a signature with IPIDClass equal to
“I-SD” if the sample contains communications with different IP destination addresses;
they get a signature with IPIDClass equal to “I-SI” if the sample contains
communications with the same IP destination address, but involving different sessions
(e.g. a telnet and a ftp session running in parallel); they get a signature with IPIDClass
equal to “I” if the sample contains one session with one end point.

102 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

PassiveTest_IP_ID

OS IPIDClass Protocol

MacOS 7.5.3, 7.5.5, 7.6, 7.6.1, 8.0, 8.1, 9.2.2 I-SD (or I-SI or I) 6

MacOS 7.5.3, 7.5.5, 7.6, 7.6.1, 8.0, 8.1, 9.2.2 I-SD (or I-SI or I) 17

MacOS 10 10.0.0 I-SI (or I) -1

MacOS 10 10.0.0 I-SI (or I) 1

MacOS 10 10.0.0 I-SI (or I) 6

MacOS 10 10.0.0 I-SI (or I) 17

NetBSD 1.1, 1.2, 1.2.1, 1.3, 1.3.1, 1.3.2, 1.3.3, 1.4, 1.4.1, 1.4.2, 1.4.3, 1.5, 1.5.1, 1.5.2, 1.5.3, 1.6,
1.6.1 I-SI (or I) -1

NetBSD 1.1, 1.2, 1.2.1, 1.3, 1.3.1, 1.3.2, 1.3.3, 1.4, 1.4.1, 1.4.2, 1.4.3, 1.5, 1.5.1, 1.5.2, 1.5.3, 1.6,
1.6.1 I-SI (or I) 1

NetBSD 1.1, 1.2, 1.2.1, 1.3, 1.3.1, 1.3.2, 1.3.3, 1.4, 1.4.1, 1.4.2, 1.4.3, 1.5, 1.5.1, 1.5.2, 1.5.3, 1.6,
1.6.1 I-SI (or I) 6

NetBSD 1.1, 1.2, 1.2.1, 1.3, 1.3.1, 1.3.2, 1.3.3, 1.4, 1.4.1, 1.4.2, 1.4.3, 1.5, 1.5.1, 1.5.2, 1.5.3, 1.6,
1.6.1 I-SI (or I) 17

Netware 4.11, 4.11 sp9, 5, 5 sp6a, 5.1 I-SI (or I) -1

Netware 4.11, 4.11 sp9, 5, 5 sp6a, 5.1 I-SI (or I) 1

Netware 4.11, 4.11 sp9, 5, 5 sp6a, 5.1 I-SI (or I) 6

Netware 4.11, 4.11 sp9, 5, 5 sp6a, 5.1 I-SI (or I) 17

Netware 5.1 sp6, 6, 6 sp3 BI-SI (or BI) -1

Netware 5.1 sp6, 6, 6 sp3 BI-SI (or BI) 1

Netware 5.1 sp6, 6, 6 sp3 BI-SI (or BI) 6

Netware 5.1 sp6, 6, 6 sp3 BI-SI (or BI) 17

OpenBSD 2.0, 2.1, 2.2, 2.3, 2.4 I-SI (or I) -1

OpenBSD 2.0, 2.1, 2.2, 2.3, 2.4 I-SI (or I) 1

OpenBSD 2.0, 2.1, 2.2, 2.3, 2.4 I-SI (or I) 6

OpenBSD 2.0, 2.1, 2.2, 2.3, 2.4 I-SI (or I) 17

OpenBSD 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3 RD -1

OpenBSD 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3 RD 1

OpenBSD 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3 RD 6

OpenBSD 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3 RD 17

QNX RTP 4, 6.0, 6.1, 6.2, 6.2.1 I-SI (or I) -1

QNX RTP 4, 6.0, 6.1, 6.2, 6.2.1 I-SI (or I) 1

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 103

PassiveTest_IP_ID

OS IPIDClass Protocol

QNX RTP 4, 6.0, 6.1, 6.2, 6.2.1 I-SI (or I) 6

QNX RTP 4, 6.0, 6.1, 6.2, 6.2.1 I-SI (or I) 17

SunOS 5.5, 5.5.1, 5.6, 5.7, 5.8, 5.8(Intel), 5.9 I-SD (or I-SI or I) -1

SunOS 5.5, 5.5.1, 5.6, 5.7, 5.8, 5.8(Intel), 5.9 I-SD (or I-SI or I) 1

SunOS 5.5, 5.5.1, 5.6, 5.7, 5.8, 5.8(Intel), 5.9 I-SD (or I-SI or I) 6

SunOS 5.5, 5.5.1, 5.6, 5.7, 5.8, 5.8(Intel), 5.9 I-SD (or I) 17

Windows 95, NT 3.51 standard, 98, 98 SE BI-SI (or BI) -1

Windows 95, NT 3.51 standard, 98, 98 SE BI-SI (or BI) 1

Windows 95, NT 3.51 standard, 98, 98 SE BI-SI (or BI) 6

Windows 95, NT 3.51 standard, 98, 98 SE BI-SI (or BI) 17

Windows NT 4 standard, sp3, sp4, sp6 BI-SI (or BI) -1

Windows NT 4 standard, sp3, sp4, sp6 BI-SI (or BI) 1

Windows NT 4 standard, sp3, sp4, sp6 BI-SI (or BI) 6

Windows NT 4 standard, sp3, sp4, sp6 BI-SI (or BI) 17

Windows Millennium standard I-SI (or I) -1

Windows Millennium standard I-SI (or I) 1

Windows Millennium standard I-SI (or I) 6

Windows Millennium standard I-SI (or I) 17

Windows 2000 standard, sp2, sp3, sp4 I-SI (or I) -1

Windows 2000 standard, sp2, sp3, sp4 I-SI (or I) 1

Windows 2000 standard, sp2, sp3, sp4 I-SI (or I) 6

Windows 2000 standard, sp2, sp3, sp4 I-SI (or I) 17

Windows XP Home, Professional I-SI (or I) -1

Windows XP Home, Professional I-SI (or I) 1

Windows XP Home, Professional I-SI (or I) 6

Windows XP Home, Professional I-SI (or I) 17

104 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

PassiveTest_IP_ID

OS IPIDClass Protocol

Windows Net standard I-SI (or I) -1

Windows Net standard I-SI (or I) 1

Windows Net standard I-SI (or I) 6

Windows Net standard I-SI (or I) 17

Windows 2003 Server standard I-SI (or I) -1

Windows 2003 Server standard I-SI (or I) 1

Windows 2003 Server standard I-SI (or I) 6

Windows 2003 Server standard I-SI (or I) 17

Table 18. PassiveTest_TCP_TS

PassiveTest_TCP_TS

OS TSClass

FreeBSD 2.0.5, 2.1.0, 2.1.5, 2.1.6, 2.1.7.1, 2,2,0, 2.2.1, 2.2.2, 2.2.5, 2.2.6, 2.2.7, 2.2.8 2HZ

FreeBSD 4.4, 4.5, 4.6, 4.6.2, 4.7, 4.8, 5.0, 5.1 100HZ

Linux 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.2.5-15, 2.2.6, 2.2.7, 2.2.8, 2.2.9 100HZ

Linux 2.2.10, 2.2.11, 2.2.12, 2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22, 2.2.17, 2.2.18,
2.2.19 100HZ

Linux 2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23, 2.2.24 100HZ

Linux 2.4.0, 2.4.1, 2.4.2, 2.4.2-2, 2.4.3, 2.4.4, 2.4.4-4GB, 2.4.5, 2.4.6, 2.4.7, 2.4.8, 2.4.9 100HZ

Linux 2.4.10, 2.4.10-4GB, 2.4.11, 2.4.12, 2.4.13, 2.4.14, 2.4.15, 2.4.16, 2.4.17, 2.4.18, 2.4.18-3, 2.4.18-4GB 100HZ

Linux 2.4.18-14 500HZ

Linux 2.4.19, 2.4.19-4GB, 2.4.20, 2.4.20-8, 2.4.21-0.13mdk 100HZ

MacOS 9.0, 9.1, 9.2.1, 9.2.2 1000HZ

MacOS 10.1.0, 10.1.1, 10.1.2, 10.1.3, 10.1.4, 10.1.5, 10.2.1, 10.2.2, 10.2.3, 10.2.4, 10.2.5, 10.2.6 2HZ

NetBSD 1.1 2HZ

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 105

PassiveTest_TCP_TS

OS TSClass

NetBSD 1.2, 1.2.1 2HZ

NetBSD 1.3 , 1.3.1, 1.3.2, 1.3.3 2HZ

NetBSD 1.4 , 1.4.1, 1.4.2, 1.4.3 2HZ

NetBSD 1.5, 1.5.1, 1.5.2, 1.5.3 2HZ

NetBSD 1.6, 1.6.1 Z

OpenBSD 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9 2HZ

OpenBSD 3.0, 3.1, 3.2, 3.3 2HZ

QNX RTP 6.2, 6.2.1 2HZ

SunOS 5.6, 5.7, 5.8, 5.9 100HZ

SunOS (Intel) 5.8 100HZ

Windows 2000 standard, sp2, sp3, sp4 Z

Windows Millennium standard Z

Windows XP Home, Professional Z

Windows Net standard Z

Windows 2003 Server standard Z

Table 19. PassiveTest_ARPRetransmit

PassiveTest_ARPRetransmit
OS NbOfPackets DelayMin DelayMax ARPClass

BEOS 5 1 SP

FreeBSD 2.0.5, 2.1.0, 2.1.5, 2.1.6, 2.1.7.1, 2.2.0, 2.2.1,
2.2.2, 2.2.5, 2.2.6, 2.2.7, 2.2.8 1 SP

FreeBSD 3.0, 3.1, 3.2, 3.3, 3.4, 3.5.1 1 SP

FreeBSD 4.0, 4.1, 4.1.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.6.2, 4.7,
4.8, 5.0, 5.1 1 SP

Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 infinit 47 5000000 60000000UNKNOWN

Linux 2.2.0, 2.2.1, 2.2.2, 2.2.3 4 1000000 1000000C

Linux 2.2.4, 2.2.5, 2.2.5-15, 2.2.6, 2.2.7, 2.2.8, 2.2.9 3 1000000 1000000C

47 Linux 2.0.29 to 2.0.36 keep retransmitting unaswered ARP requests. The first 4
packets are separated by 5 seconds, then all remaining packets are separated by 60
seconds.

106 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

PassiveTest_ARPRetransmit
OS NbOfPackets DelayMin DelayMax ARPClass

Linux 2.2.10, 2.2.11, 2.2.12, 2.2.12-20, 2.2.13, 2.2.14,
2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22, 2.2.17, 2.2.18, 2.2.19 3 1000000 1000000C

Linux 2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23, 2.2.24 3 1000000 1000000C

Linux 2.4.0, 2.4.1, 2.4.2, 2.4.2-2, 2.4.3, 2.4.4, 2.4.4-4GB,
2.4.5, 2.4.6, 2.4.7, 2.4.8, 2.4.9 3 1000000 1000000C

Linux 2.4.10, 2.4.10-4GB, 2.4.11, 2.4.12, 2.4.13, 2.4.14,
2.4.15, 2.4.16, 2.4.17, 2.4.18, 2.4.18-3, 2.4.18-4GB,2.4.18-
14, 2.4.19, 2.4.19-4GB, 2.4.20, 2.4.20-8, 2.4.21-0.13mdk 3 1000000 1000000C

MacOS 7.5.3, 7.5.5, 7.6, 7.6.1 6 1000000 1000000C

MacOS 8.0, 8.1 6 1000000 1000000C

MacOS 9.0, 9.1, 9.2.1, 9.2.2 6 1000000 1000000C

MacOS 10.1.0, 10.1.1, 10.1.2, 10.1.3, 10.1.4, 10.1.5, 10.2.1,
10.2.2, 10.2.3, 10.2.4, 10.2.5, 10.2.6 1 SP

NetBSD 1.1 1 SP

NetBSD 1.2, 1.2.1 1 SP

NetBSD 1.3 , 1.3.1, 1.3.2, 1.3.3 1 SP

NetBSD 1.4 , 1.4.1, 1.4.2, 1.4.3 1 SP

NetBSD 1.5, 1.5.1, 1.5.2, 1.5.3 1 SP

NetBSD 1.6, 1.6.1 1 SP

Netware 4.11, 4.11 sp9, 1 SP

Netware 5, 5 sp6a 1 SP

Netware 5.1, 5.1 sp6 1 SP

Netware 6, 6 sp3 1 SP

OpenBSD 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9 1 SP

OpenBSD 3.0, 3.1, 3.2, 3.3 1 SP

QNX RTP 4 1 SP

QNX RTP 6.0, 6.1, 6.2, 6.2.1 1 SP

SunOS 5.5, 5.5.1 6 900000 900000C

SunOS 5.6, 5.7, 5.8, 5.9, (Intel) 5.8 6 1000000 1000000C

Windows 95 1 SP

Windows NT 3.51 standard 1 SP

Windows 98, 98 SE 1 SP

Windows NT 4 standard, sp3, sp4, sp6 1 SP

Windows Millennium standard 1 SP

Windows 2000 standard, sp2, sp3, sp4 1 SP

Windows XP Home, Professional 1 SP

Windows Net standard 1 SP

Windows 2003 Server standard 1 SP

107

Table 20. PassiveTest_TCP_SYNACK

PassiveTest_TCP_SYNACK

ResultOSKey DF TTL WIN AckNb TCPecn TCPopts SYN_TCPecn SYN_SetOfTCPopts

BEOS 5 N 255 12288 S++ M@1460 {C.NewM@1460TW}

BEOS 5 N 255 12288 S++ M@1460 {M@1459}

BEOS 5 N 255 12288 S++ M@1460 {M@1460}

BEOS 5 N 255 12288 S++ M@1460 {M@1460S}

BEOS 5 N 255 12288 S++ M@1460 {M@1460STW}

BEOS 5 N 255 12288 S++ M@1460 {M@1460T@0W}

BEOS 5 N 255 12288 S++ M@1460 {M@1460TW}

FreeBSD 2.1.5, 2.1.6, 2.1.7.1, 2,2,0, 2.2.1, 2.2.2, 2.2.5,
2.2.6, 2.2.7, 2.2.8 N 64 17280 S++ M@1460NW@0NNTNNCNNC.Echo {C.NewM@1460TW}

FreeBSD 2.1.5, 2.1.6, 2.1.7.1, 2,2,0, 2.2.1, 2.2.2, 2.2.5,
2.2.6, 2.2.7, 2.2.8 N 64

12(MSSReq)
48 S++ M@1460 {M@1459}

FreeBSD 2.1.5, 2.1.6, 2.1.7.1, 2,2,0, 2.2.1, 2.2.2, 2.2.5,
2.2.6, 2.2.7, 2.2.8 N 64 12(MSS) S++ M@1460 {M@1460}

FreeBSD 2.1.5, 2.1.6, 2.1.7.1, 2,2,0, 2.2.1, 2.2.2, 2.2.5,
2.2.6, 2.2.7, 2.2.8 N 64 12(MSS) S++ M@1460 {M@1460S}

FreeBSD 2.1.5, 2.1.6, 2.1.7.1, 2,2,0, 2.2.1, 2.2.2, 2.2.5,
2.2.6, 2.2.7, 2.2.8 N 64 17376 S++ M@1460NW@0NNT {M@1460STW}

FreeBSD 2.1.5, 2.1.6, 2.1.7.1, 2,2,0, 2.2.1, 2.2.2, 2.2.5,
2.2.6, 2.2.7, 2.2.8 N 64 17376 S++ M@1460NW@0NNT {M@1460T@0W}

FreeBSD 2.1.5, 2.1.6, 2.1.7.1, 2,2,0, 2.2.1, 2.2.2, 2.2.5,
2.2.6, 2.2.7, 2.2.8 N 64 17376 S++ M@1460NW@0NNT {M@1460TW}

48 12(MSSReq) means that the TCP Window Size (WIN) in the response is equal to twelve times the TCP Maximum Segment Size (MSS)
advertized in the request (i.e. the SYN packet). In this particular signature 12(MSSReq) means that the WIN was equal to 12x1459=17508. It can
be infer from this signature that when the WIN value in FreeBSD SYN/ACK is related to a MSS value, the influence comes from the MSS
advertized in the SYN rather than from the MSS value advertized in the SYN/ACK response. This observation holds for Mac OS X, OpenBSD,
Windows, SunOS 5.8 and 5.9, and NetBSD prior to 1.3.

108

PassiveTest_TCP_SYNACK

ResultOSKey DF TTL WIN AckNb TCPecn TCPopts SYN_TCPecn SYN_SetOfTCPopts

FreeBSD 3.0, 3.1, 3.2, 3.3, 3.4, 3.5.1, 4.0, 4.1,
4.1.1,4.2, 4.3 Y 64 12(MSS) S++ M@1460 {C.NewM@1460TW}

FreeBSD 3.0, 3.1, 3.2, 3.3, 3.4, 3.5.1, 4.0, 4.1,
4.1.1,4.2, 4.3 Y 64 12(MSSReq) S++ M@1460 {M@1459}

FreeBSD 3.0, 3.1, 3.2, 3.3, 3.4, 3.5.1, 4.0, 4.1,
4.1.1,4.2, 4.3 Y 64 12(MSS) S++ M@1460 {M@1460}

FreeBSD 3.0, 3.1, 3.2, 3.3, 3.4, 3.5.1, 4.0, 4.1,
4.1.1,4.2, 4.3 Y 64 12(MSS) S++ M@1460 {M@1460S}

FreeBSD 3.0, 3.1, 3.2, 3.3, 3.4, 3.5.1, 4.0, 4.1,
4.1.1,4.2, 4.3 Y 64 12(MSS) S++ M@1460 {M@1460STW}

FreeBSD 3.0, 3.1, 3.2, 3.3, 3.4, 3.5.1, 4.0, 4.1,
4.1.1,4.2, 4.3 Y 64 12(MSS) S++ M@1460 {M@1460T@0W}

FreeBSD 3.0, 3.1, 3.2, 3.3, 3.4, 3.5.1, 4.0, 4.1,
4.1.1,4.2, 4.3 Y 64 12(MSS) S++ M@1460 {M@1460TW}

FreeBSD 4.4 Y 64 17376 S++ M@1460NW@0NNT {C.NewM@1460TW}

FreeBSD 4.4 Y 64 12(MSSReq) S++ M@1460 {M@1459}

FreeBSD 4.4 Y 64 12(MSS) S++ M@1460 {M@1460}

FreeBSD 4.4 Y 64 12(MSS) S++ M@1460 {M@1460S}

FreeBSD 4.4 Y 64 17376 S++ M@1460NW@0NNT {M@1460STW}

FreeBSD 4.4 Y 64 17376 S++ M@1460NW@0NNT {M@1460T@0W}

FreeBSD 4.4 Y 64 17376 S++ M@1460NW@0NNT {M@1460TW}

FreeBSD 4.5 N 64 65535 S++ M@1460NW@1NNT {C.NewM@1460TW}

FreeBSD 4.5 N 64 65535 S++ M@1460 {M@1459}

FreeBSD 4.5 N 64 65535 S++ M@1460 {M@1460}

FreeBSD 4.5 N 64 65535 S++ M@1460 {M@1460S}

FreeBSD 4.5 N 64 65535 S++ M@1460NW@1NNT {M@1460STW}

FreeBSD 4.5 N 64 65535 S++ M@1460NW@1NNT {M@1460T@0W}

FreeBSD 4.5 N 64 65535 S++ M@1460NW@1NNT {M@1460TW}

FreeBSD 4.6, 4.6.2, 4.7, 4.8 N 64 57344 S++ M@1460NW@0NNT {C.NewM@1460TW}

109

PassiveTest_TCP_SYNACK

ResultOSKey DF TTL WIN AckNb TCPecn TCPopts SYN_TCPecn SYN_SetOfTCPopts

FreeBSD 4.6, 4.6.2, 4.7, 4.8 N 64 57344 S++ M@1460 {M@1459}

FreeBSD 4.6, 4.6.2, 4.7, 4.8 N 64 57344 S++ M@1460 {M@1460}

FreeBSD 4.6, 4.6.2, 4.7, 4.8 N 64 57344 S++ M@1460 {M@1460S}

FreeBSD 4.6, 4.6.2, 4.7, 4.8 N 64 57344 S++ M@1460NW@0NNT {M@1460STW}

FreeBSD 4.6, 4.6.2, 4.7, 4.8 N 64 57344 S++ M@1460NW@0NNT {M@1460T@0W}

FreeBSD 4.6, 4.6.2, 4.7, 4.8 N 64 57344 S++ M@1460NW@0NNT {M@1460TW}

FreeBSD 5.0, 5.1 Y 64 65535 S++ M@1460NW@1NNT {C.NewM@1460TW}

FreeBSD 5.0, 5.1 Y 64 65535 S++ M@1460 {M@1459}

FreeBSD 5.0, 5.1 Y 64 65535 S++ M@1460 {M@1460}

FreeBSD 5.0, 5.1 Y 64 65535 S++ M@1460 {M@1460S}

FreeBSD 5.0, 5.1 Y 64 65535 S++ M@1460NW@1NNT {M@1460STW}

FreeBSD 5.0, 5.1 Y 64 65535 S++ M@1460NW@1NNT {M@1460T@0W}

FreeBSD 5.0, 5.1 Y 64 65535 S++ M@1460NW@1NNT {M@1460TW}

Linux 2.0.29 (Debian) N 64 15360 S++ M@1460 {C.NewM@1460TW}

Linux 2.0.29 (Debian) N 64 15360 S++ M@1459 {M@1459}

Linux 2.0.29 (Debian) N 64 15360 S++ M@1460 {M@1460}

Linux 2.0.29 (Debian) N 64 15360 S++ M@1460 {M@1460S}

Linux 2.0.29 (Debian) N 64 15360 S++ M@1460 {M@1460STW}

Linux 2.0.29 (Debian) N 64 15360 S++ M@1460 {M@1460T@0W}

Linux 2.0.29 (Debian) N 64 15360 S++ M@1460 {M@1460TW}

Linux 2.0.30 (RedHat) N 64 31744 S++ M@1460 {C.NewM@1460TW}

Linux 2.0.30 (RedHat) N 64 31744 S++ M@1459 {M@1459}

Linux 2.0.30 (RedHat) N 64 31744 S++ M@1460 {M@1460}

Linux 2.0.30 (RedHat) N 64 31744 S++ M@1460 {M@1460S}

Linux 2.0.30 (RedHat) N 64 31744 S++ M@1460 {M@1460STW}

Linux 2.0.30 (RedHat) N 64 31744 S++ M@1460 {M@1460T@0W}

Linux 2.0.30 (RedHat) N 64 31744 S++ M@1460 {M@1460TW}

Linux 2.0.32, 2.0.36 (RedHat) N 64 32736 S++ M@1460 {C.NewM@1460TW}

Linux 2.0.32, 2.0.36 (RedHat) N 64 32736 S++ M@1459 {M@1459}

Linux 2.0.32, 2.0.36 (RedHat) N 64 32736 S++ M@1460 {M@1460}

Linux 2.0.32, 2.0.36 (RedHat) N 64 32736 S++ M@1460 {M@1460S}

Linux 2.0.32, 2.0.36 (RedHat) N 64 32736 S++ M@1460 {M@1460STW}

110

PassiveTest_TCP_SYNACK

ResultOSKey DF TTL WIN AckNb TCPecn TCPopts SYN_TCPecn SYN_SetOfTCPopts

Linux 2.0.32, 2.0.36 (RedHat) N 64 32736 S++ M@1460 {M@1460T@0W}

Linux 2.0.32, 2.0.36 (RedHat) N 64 32736 S++ M@1460 {M@1460TW}

Linux 2.0.34, 2.0.36 (Debian) N 64 16352 S++ M@1460 {C.NewM@1460TW}

Linux 2.0.34, 2.0.36 (Debian) N 64 16352 S++ M@1460 {C.NewM@1460TW}

Linux 2.0.34, 2.0.36 (Debian) N 64 16352 S++ M@1459 {M@1459}

Linux 2.0.34, 2.0.36 (Debian) N 64 16352 S++ M@1459 {M@1459}

Linux 2.0.34, 2.0.36 (Debian) N 64 16352 S++ M@1460 {M@1460}

Linux 2.0.34, 2.0.36 (Debian) N 64 16352 S++ M@1460 {M@1460}

Linux 2.0.34, 2.0.36 (Debian) N 64 16352 S++ M@1460 {M@1460S}

Linux 2.0.34, 2.0.36 (Debian) N 64 16352 S++ M@1460 {M@1460S}

Linux 2.0.34, 2.0.36 (Debian) N 64 16352 S++ M@1460 {M@1460STW}

Linux 2.0.34, 2.0.36 (Debian) N 64 16352 S++ M@1460 {M@1460STW}

Linux 2.0.34, 2.0.36 (Debian) N 64 16352 S++ M@1460 {M@1460T@0W}

Linux 2.0.34, 2.0.36 (Debian) N 64 16352 S++ M@1460 {M@1460T@0W}

Linux 2.0.34, 2.0.36 (Debian) N 64 16352 S++ M@1460 {M@1460TW}

Linux 2.0.34, 2.0.36 (Debian) N 64 16352 S++ M@1460 {M@1460TW}

Linux 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.2.5-15,
2.2.6, 2.2.7, 2.2.8, 2.2.9, 2.2.10, 2.2.11, 2.2.12, 2.2.12-
20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22,
2.2.17, 2.2.18, 2.2.19, 2.2.21, 2.2.22, 2.2.23, 2.2.24 Y 64 22(MSS) S++ M@1460NNTNW@0 {C.NewM@1460TW}

Linux 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.2.5-15,
2.2.6, 2.2.7, 2.2.8, 2.2.9, 2.2.10, 2.2.11, 2.2.12, 2.2.12-
20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22,
2.2.17, 2.2.18, 2.2.19, 2.2.21, 2.2.22, 2.2.23, 2.2.24 Y 64 22(MSS) S++ M@1459 {M@1459}

Linux 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.2.5-15,
2.2.6, 2.2.7, 2.2.8, 2.2.9, 2.2.10, 2.2.11, 2.2.12, 2.2.12-
20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22,
2.2.17, 2.2.18, 2.2.19, 2.2.21, 2.2.22, 2.2.23, 2.2.24 Y 64 22(MSS) S++ M@1460 {M@1460}

111

PassiveTest_TCP_SYNACK

ResultOSKey DF TTL WIN AckNb TCPecn TCPopts SYN_TCPecn SYN_SetOfTCPopts

Linux 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.2.5-15,
2.2.6, 2.2.7, 2.2.8, 2.2.9, 2.2.10, 2.2.11, 2.2.12, 2.2.12-
20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22,
2.2.17, 2.2.18, 2.2.19, 2.2.21, 2.2.22, 2.2.23, 2.2.24 Y 64 22(MSS) S++ M@1460NNS {M@1460S}

Linux 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.2.5-15,
2.2.6, 2.2.7, 2.2.8, 2.2.9, 2.2.10, 2.2.11, 2.2.12, 2.2.12-
20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22,
2.2.17, 2.2.18, 2.2.19, 2.2.21, 2.2.22, 2.2.23, 2.2.24 Y 64 22(MSS) S++ M@1460STNW@0 {M@1460STW}

Linux 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.2.5-15,
2.2.6, 2.2.7, 2.2.8, 2.2.9, 2.2.10, 2.2.11, 2.2.12, 2.2.12-
20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22,
2.2.17, 2.2.18, 2.2.19, 2.2.21, 2.2.22, 2.2.23, 2.2.24 Y 64 22(MSS) S++ M@1460NNTNW@0 {M@1460T@0W}

Linux 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.2.5-15,
2.2.6, 2.2.7, 2.2.8, 2.2.9, 2.2.10, 2.2.11, 2.2.12, 2.2.12-
20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22,
2.2.17, 2.2.18, 2.2.19, 2.2.21, 2.2.22, 2.2.23, 2.2.24 Y 64 22(MSS) S++ M@1460NNTNW@0 {M@1460TW}

Linux 2.2.19, 2.2.20-idepci (Debian) Y 64 11(MSS) S++ M@1460NNTNW@0 {C.NewM@1460TW}

Linux 2.2.19, 2.2.20-idepci (Debian) Y 64 11(MSS) S++ M@1459 {M@1459}

Linux 2.2.19, 2.2.20-idepci (Debian) Y 64 11(MSS) S++ M@1460 {M@1460}

Linux 2.2.19, 2.2.20-idepci (Debian) Y 64 11(MSS) S++ M@1460NNS {M@1460S}

Linux 2.2.19, 2.2.20-idepci (Debian) Y 64 11(MSS) S++ M@1460STNW@0 {M@1460STW}

Linux 2.2.19, 2.2.20-idepci (Debian) Y 64 11(MSS) S++ M@1460NNTNW@0 {M@1460T@0W}

Linux 2.2.19, 2.2.20-idepci (Debian) Y 64 11(MSS) S++ M@1460NNTNW@0 {M@1460TW}

Linux 2.4.0, 2.4.1, 2.4.2, 2.4.2-2, 2.4.3, 2.4.4, 2.4.4-
4GB, 2.4.5, 2.4.6, 2.4.7, 2.4.8, 2.4.9, 2.4.10, 2.4.11,
2.4.12, 2.4.13, 2.4.14, 2.4.15, 2.4.16, 2.4.17, 2.4.18,
2.4.18-3, 2.4.18-4GB, 2.4.19, 2.4.19-4GB, 2.4.20,
2.4.20-8, 2.4.21-0.13mdk Y 64 5792 S++ M@1460NNTNW@0 {C.NewM@1460TW}

Linux 2.4.0, 2.4.1, 2.4.2, 2.4.2-2, 2.4.3, 2.4.4, 2.4.4-
4GB, 2.4.5, 2.4.6, 2.4.7, 2.4.8, 2.4.9, 2.4.10, 2.4.11,
2.4.12, 2.4.13, 2.4.14, 2.4.15, 2.4.16, 2.4.17, 2.4.18,
2.4.18-3, 2.4.18-4GB, 2.4.19, 2.4.19-4GB, 2.4.20,
2.4.20-8, 2.4.21-0.13mdk Y 64 4(MSS) S++ M@1460 {M@1459}

112

PassiveTest_TCP_SYNACK

ResultOSKey DF TTL WIN AckNb TCPecn TCPopts SYN_TCPecn SYN_SetOfTCPopts

Linux 2.4.0, 2.4.1, 2.4.2, 2.4.2-2, 2.4.3, 2.4.4, 2.4.4-
4GB, 2.4.5, 2.4.6, 2.4.7, 2.4.8, 2.4.9, 2.4.10, 2.4.11,
2.4.12, 2.4.13, 2.4.14, 2.4.15, 2.4.16, 2.4.17, 2.4.18,
2.4.18-3, 2.4.18-4GB, 2.4.19, 2.4.19-4GB, 2.4.20,
2.4.20-8, 2.4.21-0.13mdk Y 64 4(MSS) S++ M@1460 {M@1460}

Linux 2.4.0, 2.4.1, 2.4.2, 2.4.2-2, 2.4.3, 2.4.4, 2.4.4-
4GB, 2.4.5, 2.4.6, 2.4.7, 2.4.8, 2.4.9, 2.4.10, 2.4.11,
2.4.12, 2.4.13, 2.4.14, 2.4.15, 2.4.16, 2.4.17, 2.4.18,
2.4.18-3, 2.4.18-4GB, 2.4.19, 2.4.19-4GB, 2.4.20,
2.4.20-8, 2.4.21-0.13mdk Y 64 4(MSS) S++ M@1460NNS {M@1460S}

Linux 2.4.0, 2.4.1, 2.4.2, 2.4.2-2, 2.4.3, 2.4.4, 2.4.4-
4GB, 2.4.5, 2.4.6, 2.4.7, 2.4.8, 2.4.9, 2.4.10, 2.4.11,
2.4.12, 2.4.13, 2.4.14, 2.4.15, 2.4.16, 2.4.17, 2.4.18,
2.4.18-3, 2.4.18-4GB, 2.4.19, 2.4.19-4GB, 2.4.20,
2.4.20-8, 2.4.21-0.13mdk Y 64 5792 S++ M@1460STNW@0 {M@1460STW}

Linux 2.4.0, 2.4.1, 2.4.2, 2.4.2-2, 2.4.3, 2.4.4, 2.4.4-
4GB, 2.4.5, 2.4.6, 2.4.7, 2.4.8, 2.4.9, 2.4.10, 2.4.11,
2.4.12, 2.4.13, 2.4.14, 2.4.15, 2.4.16, 2.4.17, 2.4.18,
2.4.18-3, 2.4.18-4GB, 2.4.19, 2.4.19-4GB, 2.4.20,
2.4.20-8, 2.4.21-0.13mdk Y 64 4(MSS) S++ M@1460NW@0 49 {M@1460T@0W}

Linux 2.4.0, 2.4.1, 2.4.2, 2.4.2-2, 2.4.3, 2.4.4, 2.4.4-
4GB, 2.4.5, 2.4.6, 2.4.7, 2.4.8, 2.4.9, 2.4.10, 2.4.11,
2.4.12, 2.4.13, 2.4.14, 2.4.15, 2.4.16, 2.4.17, 2.4.18,
2.4.18-3, 2.4.18-4GB, 2.4.19, 2.4.19-4GB, 2.4.20,
2.4.20-8, 2.4.21-0.13mdk Y 64 5792 S++ M@1460NNTNW@0 {M@1460TW}

MacOS 7.5.3, 7.5.5 Y 255 12(MSS) S++ M@1460W@0L {C.NewM@1460TW}

MacOS 7.5.3, 7.5.5 Y 255 13(MSS) S++ M@1459 {M@1459}

49 Linux 2.4.0 and above stop supporting the TCP Timestamp option if TSval is set to zero (T@0) in the TCP timestamp option of the SYN
request.

113

PassiveTest_TCP_SYNACK

ResultOSKey DF TTL WIN AckNb TCPecn TCPopts SYN_TCPecn SYN_SetOfTCPopts

MacOS 7.5.3, 7.5.5 Y 255 12(MSS) S++ M@1460 {M@1460}

MacOS 7.5.3, 7.5.5 Y 255 12(MSS) S++ M@1460 {M@1460S}

MacOS 7.5.3, 7.5.5 Y 255 12(MSS) S++ M@1460 50 {M@1460STW}

MacOS 7.5.3, 7.5.5 Y 255 12(MSS) S++ M@1460W@0L {M@1460STW}

MacOS 7.5.3, 7.5.5 Y 255 12(MSS) S++ M@1460W@0L {M@1460T@0W}

MacOS 7.5.3, 7.5.5 Y 255 12(MSS) S++ M@1460W@0L {M@1460TW}

MacOS 7.6, 7.6.1, 8.0, 8.1 51 Y 255 12(MSS) S++ M@1460W@0L {C.NewM@1460TW}

MacOS 7.6, 7.6.1, 8.0, 8.1 Y 255 65535 S++ M@1460W@2L {C.NewM@1460TW}

MacOS 7.6, 7.6.1, 8.0, 8.1 Y 255 13(MSS) S++ M@1459 {M@1459}

MacOS 7.6, 7.6.1, 8.0, 8.1 Y 255 44(MSS) S++ M@1459 {M@1459}

MacOS 7.6, 7.6.1, 8.0, 8.1 Y 255 12(MSS) S++ M@1460 {M@1460}

MacOS 7.6, 7.6.1, 8.0, 8.1 Y 255 44(MSS) S++ M@1460 {M@1460}

MacOS 7.6, 7.6.1, 8.0, 8.1 Y 255 12(MSS) S++ M@1460 {M@1460S}

MacOS 7.6, 7.6.1, 8.0, 8.1 Y 255 44(MSS) S++ M@1460 {M@1460S}

MacOS 7.6, 7.6.1, 8.0, 8.1 Y 255 12(MSS) S++ M@1460 {M@1460STW}

MacOS 7.6, 7.6.1, 8.0, 8.1 Y 255 12(MSS) S++ M@1460W@0L {M@1460STW}

MacOS 7.6, 7.6.1, 8.0, 8.1 Y 255 44(MSS) S++ M@1460 {M@1460STW}

MacOS 7.6, 7.6.1, 8.0, 8.1 Y 255 65535 S++ M@1460W@2L {M@1460STW}

MacOS 7.6, 7.6.1, 8.0, 8.1 Y 255 12(MSS) S++ M@1460W@0L {M@1460T@0W}

MacOS 7.6, 7.6.1, 8.0, 8.1 Y 255 65535 S++ M@1460W@2L {M@1460T@0W}

50 MacOS 7 to 8 have two signatures for the SYN stimulus with SYN_SetOfTCPopts={M@1460STW@0}. Recall that the TCP options in
SYN_SetOfTCPopts are listed in alphabetic order while the TCP options in TCPops are listed in the order they appear. MacOS 7 to 8 are the only
systems we have seen for which the order in which the TCP options appear in the SYN influence the options advertised in response. Experiments
conducted on the testbed lead us to believe that these systems do not process the last TCP option appearing in the SYN packet. Aside from the
NOP and the EOL options, these machines only support the MSS and Window scale option. They show support for both options when stimulated
by OpenBSD 2.9 (SYN_SetOfTCPopts={M@1460STW@0}) for which the options appear in the following order M@1460NNSNW@0NNT.
The Window Scale option is missing from their response to Linux 2.4.7 (SYN_SetOfTCPopts={M@1460STW@0}) for which the options appear
in the following order M@1460STNW@0.
51 The Window size (WIN) value in SYN/ACK of MacOS 7.6 to 8.1 could be influence by the service running and the WIN value advertized in the
stimulus (omitted from the signature).

114

PassiveTest_TCP_SYNACK

ResultOSKey DF TTL WIN AckNb TCPecn TCPopts SYN_TCPecn SYN_SetOfTCPopts

MacOS 7.6, 7.6.1, 8.0, 8.1 Y 255 12(MSS) S++ M@1460W@0L {M@1460TW}

MacOS 7.6, 7.6.1, 8.0, 8.1 Y 255 65535 S++ M@1460W@2L {M@1460TW}

MacOS 9.0, 9.1, 9.2.1, 9.2.2 52 N 255 32768 S++ M@1460W@0NNNT {C.NewM@1460TW}

MacOS 9.0, 9.1, 9.2.1, 9.2.2 N 255 65535 S++ M@1460W@2NNNT {C.NewM@1460TW}

MacOS 9.0, 9.1, 9.2.1, 9.2.2 N 255 32768 S++ M@1459 {M@1459}

MacOS 9.0, 9.1, 9.2.1, 9.2.2 N 255 65535 S++ M@1459 {M@1459}

MacOS 9.0, 9.1, 9.2.1, 9.2.2 N 255 32768 S++ M@1460 {M@1460}

MacOS 9.0, 9.1, 9.2.1, 9.2.2 N 255 65535 S++ M@1460 {M@1460}

MacOS 9.0, 9.1, 9.2.1, 9.2.2 N 255 32768 S++ M@1460 {M@1460S}

MacOS 9.0, 9.1, 9.2.1, 9.2.2 N 255 65535 S++ M@1460 {M@1460S}

MacOS 9.0, 9.1, 9.2.1, 9.2.2 N 255 32768 S++ M@1460W@0NNNT {M@1460STW}

MacOS 9.0, 9.1, 9.2.1, 9.2.2 N 255 65535 S++ M@1460W@2NNNT {M@1460STW}

MacOS 9.0, 9.1, 9.2.1, 9.2.2 N 255 32768 S++ M@1460W@0NNNT {M@1460T@0W}

MacOS 9.0, 9.1, 9.2.1, 9.2.2 N 255 65535 S++ M@1460W@2NNNT {M@1460T@0W}

MacOS 9.0, 9.1, 9.2.1, 9.2.2 N 255 32768 S++ M@1460W@0NNNT {M@1460TW}

MacOS 9.0, 9.1, 9.2.1, 9.2.2 N 255 65535 S++ M@1460W@2NNNT {M@1460TW}

MacOS 10.1.0, 10.1.1, 10.1.2, 10.1.3, 10.1.4, 10.1.5,
10.2.1, 10.2.2, 10.2.3, 10.2.4, 10.2.5, 10.2.6 53 Y 64 33304 S++ M@1460NW@0NNT {C.NewM@1460TW}

MacOS 10.1.0, 10.1.1, 10.1.2, 10.1.3, 10.1.4, 10.1.5,
10.2.1, 10.2.2, 10.2.3, 10.2.4, 10.2.5, 10.2.6 Y 64 23(MSSReq)54S++ M@1460 {M@1459}

52 The Window size (WIN) value in SYN/ACK of MacOS 9 could be influence by the service running and the WIN value advertized in the
stimulus (omitted from the signature).
53 The Window size (WIN) value in SYN/ACK of MacOS X appears to be independent of service running, but to depend on the presence of
Window Scale option in the stimulus.
54 “MSSReq” means that the TCP Window Size (WIN) in the response is related to TCP Maximum Segment Size (MSS) advertized in the request
(i.e. M@1459 of the SYN packet). It can be infer from this signature that when the WIN value in MacOS X’s SYN/ACK is related to a MSS
value, the influence comes from the MSS advertized in the SYN rather than from the MSS value advertized in the SYN/ACK response.

115

PassiveTest_TCP_SYNACK

ResultOSKey DF TTL WIN AckNb TCPecn TCPopts SYN_TCPecn SYN_SetOfTCPopts

MacOS 10.1.0, 10.1.1, 10.1.2, 10.1.3, 10.1.4, 10.1.5,
10.2.1, 10.2.2, 10.2.3, 10.2.4, 10.2.5, 10.2.6 Y 64 23(MSS) S++ M@1460 {M@1460}

MacOS 10.1.0, 10.1.1, 10.1.2, 10.1.3, 10.1.4, 10.1.5,
10.2.1, 10.2.2, 10.2.3, 10.2.4, 10.2.5, 10.2.6 Y 64 23(MSS) S++ M@1460 {M@1460S}

MacOS 10.1.0, 10.1.1, 10.1.2, 10.1.3, 10.1.4, 10.1.5,
10.2.1, 10.2.2, 10.2.3, 10.2.4, 10.2.5, 10.2.6 Y 64 33304 S++ M@1460NW@0NNT {M@1460STW}

MacOS 10.1.0, 10.1.1, 10.1.2, 10.1.3, 10.1.4, 10.1.5,
10.2.1, 10.2.2, 10.2.3, 10.2.4, 10.2.5, 10.2.6 Y 64 33304 S++ M@1460NW@0NNT {M@1460T@0W}

MacOS 10.1.0, 10.1.1, 10.1.2, 10.1.3, 10.1.4, 10.1.5,
10.2.1, 10.2.2, 10.2.3, 10.2.4, 10.2.5, 10.2.6 Y 64 33304 S++ M@1460NW@0NNT {M@1460TW}

NetBSD 1.1, 1.2, 1.2.1 N 64 12(MSS) S++ M@1460NW@0NNT {C.NewM@1460TW}

NetBSD 1.1, 1.2, 1.2.1 N 64
12(MSSReq)
55 S++ M@1460 {M@1459}

NetBSD 1.1, 1.2, 1.2.1 N 64 12(MSS) S++ M@1460 {M@1460}

NetBSD 1.1, 1.2, 1.2.1 N 64 12(MSS) S++ M@1460 {M@1460S}

NetBSD 1.1, 1.2, 1.2.1 N 64 12(MSS) S++ M@1460NW@0NNT {M@1460STW}

NetBSD 1.1, 1.2, 1.2.1 N 64 12(MSS) S++ M@1460NW@0NNT {M@1460T@0W}

NetBSD 1.1, 1.2, 1.2.1 N 64 12(MSS) S++ M@1460NW@0NNT {M@1460TW}

NetBSD 1.3 , 1.3.1, 1.3.2, 1.3.3, 1.4 , 1.4.1, 1.4.2,
1.4.3, 1.5, 1.5.1, 1.5.2, 1.5.3 N 64 16384 S++ M@1460NW@0NNT {C.NewM@1460TW}

NetBSD 1.3 , 1.3.1, 1.3.2, 1.3.3, 1.4 , 1.4.1, 1.4.2,
1.4.3, 1.5, 1.5.1, 1.5.2, 1.5.3 N 64 16384 S++ M@1460 {M@1459}

NetBSD 1.3 , 1.3.1, 1.3.2, 1.3.3, 1.4 , 1.4.1, 1.4.2,
1.4.3, 1.5, 1.5.1, 1.5.2, 1.5.3 N 64 16384 S++ M@1460 {M@1460}

NetBSD 1.3 , 1.3.1, 1.3.2, 1.3.3, 1.4 , 1.4.1, 1.4.2,
1.4.3, 1.5, 1.5.1, 1.5.2, 1.5.3 N 64 16384 S++ M@1460 {M@1460S}

55 “MSSReq” means that the TCP Window Size (WIN) in the response is related to TCP Maximum Segment Size (MSS) advertized in the request
(i.e. M@1459 of the SYN packet). It can be infer from this signature that when the WIN value in a SYN/ACK transmitted by NetBSD 1.1 and 1.2
is related to a MSS value, the influence comes from the MSS advertized in the SYN rather than from the MSS value advertized in the SYN/ACK
response.

116

PassiveTest_TCP_SYNACK

ResultOSKey DF TTL WIN AckNb TCPecn TCPopts SYN_TCPecn SYN_SetOfTCPopts

NetBSD 1.3 , 1.3.1, 1.3.2, 1.3.3, 1.4 , 1.4.1, 1.4.2,
1.4.3, 1.5, 1.5.1, 1.5.2, 1.5.3 N 64 16384 S++ M@1460NW@0NNT {M@1460STW}

NetBSD 1.3 , 1.3.1, 1.3.2, 1.3.3, 1.4 , 1.4.1, 1.4.2,
1.4.3, 1.5, 1.5.1, 1.5.2, 1.5.3 N 64 16384 S++ M@1460NW@0NNT {M@1460T@0W}

NetBSD 1.3 , 1.3.1, 1.3.2, 1.3.3, 1.4 , 1.4.1, 1.4.2,
1.4.3, 1.5, 1.5.1, 1.5.2, 1.5.3 N 64 16384 S++ M@1460NW@0NNT {M@1460TW}

NetBSD 1.6, 1.6.1 N 64 16384 S++ M@1460NW@0NNT@0 {C.NewM@1460TW}

NetBSD 1.6, 1.6.1 N 64 16384 S++ M@1460 {M@1459}

NetBSD 1.6, 1.6.1 N 64 16384 S++ M@1460 {M@1460}

NetBSD 1.6, 1.6.1 N 64 16384 S++ M@1460 {M@1460S}

NetBSD 1.6, 1.6.1 N 64 16384 S++ M@1460NW@0NNT@0 {M@1460STW}

NetBSD 1.6, 1.6.1 N 64 16384 S++ M@1460NW@0NNT@0 {M@1460T@0W}

NetBSD 1.6, 1.6.1 N 64 16384 S++ M@1460NW@0NNT@0 {M@1460TW}

Netware 4.11 56 N 128 2000 S++ M@1460 {C.NewM@1460TW}

Netware 4.11 N 128 32768 S++ M@1460 {C.NewM@1460TW}

Netware 4.11 N 128 65535 S++ M@1460 {C.NewM@1460TW}

Netware 4.11 N 128 32768 S++ M@1459 {M@1459}

Netware 4.11 N 128 65535 S++ M@1459 {M@1459}

Netware 4.11 N 128 2000 S++ M@1460 {M@1460}

Netware 4.11 N 128 32768 S++ M@1460 {M@1460}

Netware 4.11 N 128 65535 S++ M@1460 {M@1460}

Netware 4.11 N 128 2000 S++ M@1460 {M@1460S}

Netware 4.11 N 128 32768 S++ M@1460 {M@1460S}

Netware 4.11 N 128 65535 S++ M@1460 {M@1460S}

Netware 4.11 N 128 2000 S++ M@1460 {M@1460STW}

Netware 4.11 N 128 32768 S++ M@1460 {M@1460STW}

Netware 4.11 N 128 65535 S++ M@1460 {M@1460STW}

56 Examination of the traffic traces indicate that the WIN value of Netware 4.11 is influence by the network service running.

117

PassiveTest_TCP_SYNACK

ResultOSKey DF TTL WIN AckNb TCPecn TCPopts SYN_TCPecn SYN_SetOfTCPopts

Netware 4.11 N 128 32768 S++ M@1460 {M@1460T@0W}

Netware 4.11 N 128 65535 S++ M@1460 {M@1460T@0W}

Netware 4.11 N 128 2000 S++ M@1460 {M@1460TW}

Netware 4.11 N 128 32768 S++ M@1460 {M@1460TW}

Netware 4.11 N 128 65535 S++ M@1460 {M@1460TW}

Netware 4.11 sp9 57 Y 128 6144 S++ M@1460 {C.NewM@1460TW}

Netware 4.11 sp9 Y 128 6144 S++ M@1459 {M@1459}

Netware 4.11 sp9 Y 128 6144 S++ M@1460 {M@1460}

Netware 4.11 sp9 Y 128 6144 S++ M@1460 {M@1460S}

Netware 4.11 sp9 Y 128 6144 S++ M@1460 {M@1460STW}

Netware 4.11 sp9 Y 128 6144 S++ M@1460 {M@1460T@0W}

Netware 4.11 sp9 Y 128 6144 S++ M@1460 {M@1460TW}

Netware 5 58 Y 128 32768 S++ M@1460 {C.NewM@1460TW}

Netware 5 Y 128 65535 S++ M@1460 {C.NewM@1460TW}

Netware 5 Y 128 8191 S++ M@1460 {C.NewM@1460TW}

Netware 5 Y 128 32768 S++ M@1459 {M@1459}

Netware 5 Y 128 65535 S++ M@1459 {M@1459}

Netware 5 Y 128 32768 S++ M@1460 {M@1460}

Netware 5 Y 128 65535 S++ M@1460 {M@1460}

Netware 5 Y 128 8191 S++ M@1460 {M@1460}

Netware 5 Y 128 32768 S++ M@1460 {M@1460S}

Netware 5 Y 128 65535 S++ M@1460 {M@1460S}

Netware 5 Y 128 8191 S++ M@1460 {M@1460S}

Netware 5 Y 128 32768 S++ M@1460 {M@1460STW}

Netware 5 Y 128 65535 S++ M@1460 {M@1460STW}

Netware 5 Y 128 8191 S++ M@1460 {M@1460STW}

Netware 5 Y 128 32768 S++ M@1460 {M@1460T@0W}

Netware 5 Y 128 65535 S++ M@1460 {M@1460T@0W}

Netware 5 Y 128 32768 S++ M@1460 {M@1460TW}

57 The service pack sp9 of Netware 4.11 seems to prevent variation in the WIN value.
58 Examination of the traffic traces indicate that the WIN value of Netware 5 is influence by the network service running.

118

PassiveTest_TCP_SYNACK

ResultOSKey DF TTL WIN AckNb TCPecn TCPopts SYN_TCPecn SYN_SetOfTCPopts

Netware 5 Y 128 65535 S++ M@1460 {M@1460TW}

Netware 5 Y 128 8191 S++ M@1460 {M@1460TW}

Netware 5 sp6a 59 Y 128 6144 S++ M@1460 {C.NewM@1460TW}

Netware 5 sp6a Y 128 6144 S++ M@1459 {M@1459}

Netware 5 sp6a Y 128 6144 S++ M@1460 {M@1460}

Netware 5 sp6a Y 128 6144 S++ M@1460 {M@1460S}

Netware 5 sp6a Y 128 6144 S++ M@1460 {M@1460STW}

Netware 5 sp6a Y 128 6144 S++ M@1460 {M@1460T@0W}

Netware 5 sp6a Y 128 6144 S++ M@1460 {M@1460TW}

Netware 5.1 60 Y 128 65535 S++ M@1460 {C.NewM@1460TW}

Netware 5.1 Y 128 8191 S++ M@1460 {C.NewM@1460TW}

Netware 5.1 Y 128 65535 S++ M@1459 {M@1459}

Netware 5.1 Y 128 8191 S++ M@1459 {M@1459}

Netware 5.1 Y 128 65535 S++ M@1460 {M@1460}

Netware 5.1 Y 128 8191 S++ M@1460 {M@1460}

Netware 5.1 Y 128 65535 S++ M@1460 {M@1460S}

Netware 5.1 Y 128 8191 S++ M@1460 {M@1460S}

Netware 5.1 Y 128 65535 S++ M@1460 {M@1460STW}

Netware 5.1 Y 128 8191 S++ M@1460 {M@1460STW}

Netware 5.1 Y 128 65535 S++ M@1460 {M@1460T@0W}

Netware 5.1 Y 128 8191 S++ M@1460 {M@1460T@0W}

Netware 5.1 Y 128 65535 S++ M@1460 {M@1460TW}

Netware 5.1 Y 128 8191 S++ M@1460 {M@1460TW}

Netware 5.1 sp6, 6, 6 sp3 61 Y 128 6144 S++ M@1460W@0N {C.NewM@1460TW}

59 The service pack sp6a of Netware 5 seems to prevent variation in the WIN value.
60 Examination of the traffic traces indicate that the WIN value of Netware 5.1 is influence by the network service running.
61 The service pack sp6 of Netware 5.1 seems to prevent variations in the WIN value. The WIN value of Netware 6 does not seem to be influence
by the network service running whether a service pack is installed or not.

119

PassiveTest_TCP_SYNACK

ResultOSKey DF TTL WIN AckNb TCPecn TCPopts SYN_TCPecn SYN_SetOfTCPopts

Netware 5.1 sp6, 6, 6 sp3 Y 128 6144 S++ M@1459 {M@1459}

Netware 5.1 sp6, 6, 6 sp3 Y 128 6144 S++ M@1460 {M@1460}

Netware 5.1 sp6, 6, 6 sp3 Y 128 6144 S++ M@1460SNN {M@1460S}

Netware 5.1 sp6, 6, 6 sp3 Y 128 6144 S++ M@1460W@0NSNN {M@1460STW}

Netware 5.1 sp6, 6, 6 sp3 Y 128 6144 S++ M@1460W@0N {M@1460T@0W}

Netware 5.1 sp6, 6, 6 sp3 Y 128 6144 S++ M@1460W@0N {M@1460TW}

120

PassiveTest_TCP_SYNACK

ResultOSKey DF TTL WIN AckNb TCPecn TCPopts SYN_TCPecn SYN_SetOfTCPopts

OpenBSD 2.0, 2.1, 2.2, 2.3, 2.4 N 64 12(MSS) S++ M@1460NW@0NNT {C.NewM@1460TW}

OpenBSD 2.0, 2.1, 2.2, 2.3, 2.4 N 64 12(MSSReq)62S++ M@1460 {M@1459}

OpenBSD 2.0, 2.1, 2.2, 2.3, 2.4 N 64 12(MSS) S++ M@1460 {M@1460}

OpenBSD 2.0, 2.1, 2.2, 2.3, 2.4 N 64 12(MSS) S++ M@1460 {M@1460S}

OpenBSD 2.0, 2.1, 2.2, 2.3, 2.4 N 64 12(MSS) S++ M@1460NW@0NNT {M@1460STW}

OpenBSD 2.0, 2.1, 2.2, 2.3, 2.4 N 64 12(MSS) S++ M@1460NW@0NNT {M@1460T@0W}

OpenBSD 2.0, 2.1, 2.2, 2.3, 2.4 N 64 12(MSS) S++ M@1460NW@0NNT {M@1460TW}

OpenBSD 2.5, 2.6 N 64 12(MSS) S++ M@1448NW@0NNT {C.NewM@1460TW}

OpenBSD 2.5, 2.6 N 64 12(MSSReq) S++ M@1460 {M@1459}

OpenBSD 2.5, 2.6 N 64 12(MSS) S++ M@1460 {M@1460}

OpenBSD 2.5, 2.6 N 64 12(MSS) S++ M@1460 {M@1460S}

OpenBSD 2.5, 2.6 N 64 12(MSS) S++ M@1448NW@0NNT {M@1460STW}

OpenBSD 2.5, 2.6 N 64 12(MSS) S++ M@1448NW@0NNT {M@1460T@0W}

OpenBSD 2.5, 2.6 N 64 12(MSS) S++ M@1448NW@0NNT {M@1460TW}

OpenBSD 2.7 N 64 12(MSS) S++ M@1448NW@0NNT {C.NewM@1460TW}

OpenBSD 2.7 N 64 12(MSSReq) S++ M@1460 {M@1459}

OpenBSD 2.7 N 64 12(MSS) S++ M@1460 {M@1460}

OpenBSD 2.7 N 64 12(MSS) S++ M@1460NNS {M@1460S}

OpenBSD 2.7 N 64 12(MSS) S++ M@1448NNSNW@0NNT {M@1460STW}

OpenBSD 2.7 N 64 12(MSS) S++ M@1448NW@0NNT {M@1460T@0W}

OpenBSD 2.7 N 64 12(MSS) S++ M@1448NW@0NNT {M@1460TW}

OpenBSD 2.8, 2.9, 3.0, 3.1, 3.2, 3.3 N 64 17376 S++ M@1460NW@0NNT {C.NewM@1460TW}

OpenBSD 2.8, 2.9, 3.0, 3.1, 3.2, 3.3 N 64 12(MSSReq) S++ M@1460 {M@1459}

OpenBSD 2.8, 2.9, 3.0, 3.1, 3.2, 3.3 N 64 12(MSS) S++ M@1460 {M@1460}

62 “MSSReq” means that the TCP Window Size (WIN) in the response is related to TCP Maximum Segment Size (MSS) advertized in the request
(i.e. M@1459 of the SYN packet). It can be infer from this signature that when the WIN value in a SYN/ACK transmitted by OpenBSD is related
to a MSS value, the influence comes from the MSS advertized in the SYN rather than from the MSS value advertized in the SYN/ACK response.

121

PassiveTest_TCP_SYNACK

ResultOSKey DF TTL WIN AckNb TCPecn TCPopts SYN_TCPecn SYN_SetOfTCPopts

OpenBSD 2.8, 2.9, 3.0, 3.1, 3.2, 3.3 N 64 12(MSS) S++ M@1460NNS {M@1460S}

OpenBSD 2.8, 2.9, 3.0, 3.1, 3.2, 3.3 N 64 17376 S++ M@1460NNSNW@0NNT {M@1460STW}

OpenBSD 2.8, 2.9, 3.0, 3.1, 3.2, 3.3 N 64 17376 S++ M@1460NW@0NNT {M@1460T@0W}

OpenBSD 2.8, 2.9, 3.0, 3.1, 3.2, 3.3 N 64 17376 S++ M@1460NW@0NNT {M@1460TW}

QNX RTP 4 N 64 8192 S++ M@1460 {C.NewM@1460TW}

QNX RTP 4 N 64 8192 S++ M@1460 {M@1459}

QNX RTP 4 N 64 8192 S++ M@1460 {M@1460}

QNX RTP 4 N 64 8192 S++ M@1460 {M@1460S}

QNX RTP 4 N 64 8192 S++ M@1460 {M@1460STW}

QNX RTP 4 N 64 8192 S++ M@1460 {M@1460T@0W}

QNX RTP 4 N 64 8192 S++ M@1460 {M@1460TW}

QNX RTP 6.0 N 64 8192 S++ M@1460 {C.NewM@1460TW}

QNX RTP 6.0 N 64 8192 S++ M@1460 {M@1459}

QNX RTP 6.0 N 64 8192 S++ M@1459 63 {M@1460}

QNX RTP 6.0 N 64 8192 S++ M@1460 {M@1460}

QNX RTP 6.0 N 64 8192 S++ M@1459 {M@1460S}

QNX RTP 6.0 N 64 8192 S++ M@1460 {M@1460S}

QNX RTP 6.0 N 64 8192 S++ M@1459 {M@1460STW}

QNX RTP 6.0 N 64 8192 S++ M@1460 {M@1460STW}

QNX RTP 6.0 N 64 8192 S++ M@1460 {M@1460T@0W}

QNX RTP 6.0 N 64 8192 S++ M@1459 {M@1460TW}

QNX RTP 6.0 N 64 8192 S++ M@1460 {M@1460TW}

QNX RTP 6.1, 6.2, 6.2.1 N 64 16384 S++ M@1460NW@0NNT {C.NewM@1460TW}

QNX RTP 6.1, 6.2, 6.2.1 N 64 16384 S++ M@1460 {M@1459}

QNX RTP 6.1, 6.2, 6.2.1 N 64 16384 S++ M@1460 {M@1460}

QNX RTP 6.1, 6.2, 6.2.1 N 64 16384 S++ M@1460 {M@1460S}

QNX RTP 6.1, 6.2, 6.2.1 N 64 16384 S++ M@1460NW@0NNT {M@1460STW}

QNX RTP 6.1, 6.2, 6.2.1 N 64 16384 S++ M@1460NW@0NNT {M@1460T@0W}

QNX RTP 6.1, 6.2, 6.2.1 N 64 16384 S++ M@1460NW@0NNT {M@1460TW}

63 QNX 6.0 sometimes advertize a Mazimum Segment Size (MSS) of 1459 in SYN and SYN/ACK packets. We did not identify what causes this
behaviour.

122

PassiveTest_TCP_SYNACK

ResultOSKey DF TTL WIN AckNb TCPecn TCPopts SYN_TCPecn SYN_SetOfTCPopts

SunOS 5.5, 5.5.1 Y 255 6(MSS) S++ M@1460 {C.NewM@1460TW}

SunOS 5.5, 5.5.1 Y 255 7(MSS) S++ M@1459 {M@1459}

SunOS 5.5, 5.5.1 Y 255 6(MSS) S++ M@1460 {M@1460}

SunOS 5.5, 5.5.1 Y 255 6(MSS) S++ M@1460 {M@1460S}

SunOS 5.5, 5.5.1 Y 255 6(MSS) S++ M@1460 {M@1460STW}

SunOS 5.5, 5.5.1 Y 255 6(MSS) S++ M@1460 {M@1460T@0W}

SunOS 5.5, 5.5.1 Y 255 6(MSS) S++ M@1460 {M@1460TW}

SunOS 5.6 64 Y 255 10136 S++ NNTNW@0M@1460 {C.NewM@1460TW}

SunOS 5.6 Y 255 65535 S++ NNTNW@1M@1460 {C.NewM@1460TW}

SunOS 5.6 Y 255 44(MSS) S++ M@1459 {M@1459}

SunOS 5.6 Y 255 7(MSS) S++ M@1459 {M@1459}

SunOS 5.6 Y 255 44(MSS) S++ M@1460 {M@1460}

SunOS 5.6 Y 255 6(MSS) S++ M@1460 {M@1460}

SunOS 5.6 Y 255 44(MSS) S++ M@1460 {M@1460S}

SunOS 5.6 Y 255 6(MSS) S++ M@1460 {M@1460S}

SunOS 5.6 Y 255 10136 S++ NNTNW@0M@1460 {M@1460STW}

SunOS 5.6 Y 255 65535 S++ NNTNW@1M@1460 {M@1460STW}

SunOS 5.6 Y 255 10136 S++ NNTNW@0M@1460 {M@1460T@0W}

SunOS 5.6 Y 255 65535 S++ NNTNW@1M@1460 {M@1460T@0W}

SunOS 5.6 Y 255 10136 S++ NNTNW@0M@1460 {M@1460TW}

SunOS 5.6 Y 255 65535 S++ NNTNW@1M@1460 {M@1460TW}

SunOS 5.7 Y 255 10136 S++ NNTNW@0M@1460 {C.NewM@1460TW}

SunOS 5.7 Y 255 7(MSS) S++ M@1459 {M@1459}

SunOS 5.7 Y 255 6(MSS) S++ M@1460 {M@1460}

SunOS 5.7 Y 255 6(MSS) S++ M@1460 {M@1460S}

SunOS 5.7 Y 255 10136 S++ NNTNW@0M@1460 {M@1460STW}

64 Examination of traffic traces indicates that the WIN value in SYN/ACK packet produced by SunOS 5.6 may be influenced by the network
service running, the WIN value advertized in the SYN and the presence of the TCP Window scale option in the SYN packet.

123

PassiveTest_TCP_SYNACK

ResultOSKey DF TTL WIN AckNb TCPecn TCPopts SYN_TCPecn SYN_SetOfTCPopts

SunOS 5.7 Y 255 10136 S++ NNTNW@0M@1460 {M@1460T@0W}

SunOS 5.7 Y 255 10136 S++ NNTNW@0M@1460 {M@1460TW}

SunOS 5.8 Y 60 65 24616 S++ NNTNW@0M@1460 {C.NewM@1460TW}

SunOS 5.8 Y 64 24616 S++ NNTNW@0M@1460 {C.NewM@1460TW}

SunOS 5.8 Y 60 17(MSSReq)66S++ M@1460 {M@1459}

SunOS 5.8 Y 64 17(MSSReq) S++ M@1460 {M@1459}

SunOS 5.8 Y 60 17(MSS) S++ M@1460 {M@1460}

SunOS 5.8 Y 64 17(MSS) S++ M@1460 {M@1460}

SunOS 5.8 Y 60 17(MSS) S++ NNSM@1460 {M@1460S}

SunOS 5.8 Y 64 17(MSS) S++ NNSM@1460 {M@1460S}

SunOS 5.8 Y 60 24616 S++ NNTNW@0NNSM@1460 {M@1460STW}

SunOS 5.8 Y 64 24616 S++ NNTNW@0NNSM@1460 {M@1460STW}

SunOS 5.8 Y 60 24616 S++ NNTNW@0M@1460 {M@1460T@0W}

SunOS 5.8 Y 64 24616 S++ NNTNW@0M@1460 {M@1460T@0W}

SunOS 5.8 Y 60 24616 S++ NNTNW@0M@1460 {M@1460TW}

SunOS 5.8 Y 64 24616 S++ NNTNW@0M@1460 {M@1460TW}

SunOS 5.9 Y 60 49232 S++ NNTM@1460NW@0 {C.NewM@1460TW}

SunOS 5.9 Y 64 49232 S++ NNTM@1460NW@0 {C.NewM@1460TW}

SunOS 5.9 Y 60 34(MSSReq) S++ M@1460 {M@1459}

SunOS 5.9 Y 64 34(MSSReq) S++ M@1460 {M@1459}

SunOS 5.9 Y 60 34(MSS) S++ M@1460 {M@1460}

SunOS 5.9 Y 64 34(MSS) S++ M@1460 {M@1460}

SunOS 5.9 Y 60 34(MSS) S++ M@1460NNS {M@1460S}

65 Examination of the traffic traces indicates that the TTL value in SYN/ACK packet of SunOS 5.8 and 5.9 seems to depend on the network service
running.
66 “MSSReq” means that the TCP Window Size (WIN) in the response is related to TCP Maximum Segment Size (MSS) advertized in the request
(i.e. M@1459 of the SYN packet). It can be infer from this signature that when the WIN value in a SYN/ACK transmitted by SunOS 5.8 or 5.9 is
related to a MSS value, the influence comes from the MSS advertized in the SYN rather than from the MSS value advertized in the SYN/ACK
response.

124

PassiveTest_TCP_SYNACK

ResultOSKey DF TTL WIN AckNb TCPecn TCPopts SYN_TCPecn SYN_SetOfTCPopts

SunOS 5.9 Y 64 34(MSS) S++ M@1460NNS {M@1460S}

SunOS 5.9 Y 60 49232 S++ NNTM@1460NW@0NNS {M@1460STW}

SunOS 5.9 Y 64 49232 S++ NNTM@1460NW@0NNS {M@1460STW}

SunOS 5.9 Y 60 49232 S++ NNTM@1460NW@0 {M@1460T@0W}

SunOS 5.9 Y 64 49232 S++ NNTM@1460NW@0 {M@1460T@0W}

SunOS 5.9 Y 60 49232 S++ NNTM@1460NW@0 {M@1460TW}

SunOS 5.9 Y 64 49232 S++ NNTM@1460NW@0 {M@1460TW}

SunOS (Intel) 5.8 Y 60 33304 S++ NNTNW@1M@1460 {C.NewM@1460TW}

SunOS (Intel) 5.8 Y 64 33304 S++ NNTNW@1M@1460 {C.NewM@1460TW}

SunOS (Intel) 5.8 Y 60 44(MSSReq) S++ M@1460 {M@1459}

SunOS (Intel) 5.8 Y 64 44(MSSReq) S++ M@1460 {M@1459}

SunOS (Intel) 5.8 Y 60 44(MSS) S++ M@1460 {M@1460}

SunOS (Intel) 5.8 Y 64 44(MSS) S++ M@1460 {M@1460}

SunOS (Intel) 5.8 Y 60 44(MSS) S++ NNSM@1460 {M@1460S}

SunOS (Intel) 5.8 Y 64 44(MSS) S++ NNSM@1460 {M@1460S}

SunOS (Intel) 5.8 Y 60 33304 S++ NNTNW@1NNSM@1460 {M@1460STW}

SunOS (Intel) 5.8 Y 64 33304 S++ NNTNW@1NNSM@1460 {M@1460STW}

SunOS (Intel) 5.8 Y 60 33304 S++ NNTNW@1M@1460 {M@1460T@0W}

SunOS (Intel) 5.8 Y 64 33304 S++ NNTNW@1M@1460 {M@1460T@0W}

SunOS (Intel) 5.8 Y 60 33304 S++ NNTNW@1M@1460 {M@1460TW}

SunOS (Intel) 5.8 Y 64 33304 S++ NNTNW@1M@1460 {M@1460TW}

Windows 95, NT 3.51 Y 32 6(MSS) S++ M@1460 {C.NewM@1460TW}

Windows 95, NT 3.51 Y 32 6(MSSReq) S++ M@1460 {M@1459}

Windows 95, NT 3.51 Y 32 6(MSS) S++ M@1460 {M@1460}

Windows 95, NT 3.51 Y 32 6(MSS) S++ M@1460 {M@1460S}

Windows 95, NT 3.51 Y 32 6(MSS) S++ M@1460 {M@1460STW}

Windows 95, NT 3.51 Y 32 6(MSS) S++ M@1460 {M@1460T@0W}

Windows 95, NT 3.51 Y 32 6(MSS) S++ M@1460 {M@1460TW}

125

PassiveTest_TCP_SYNACK

ResultOSKey DF TTL WIN AckNb TCPecn TCPopts SYN_TCPecn SYN_SetOfTCPopts

Windows NT 4 standard, sp3, sp4, sp6 Y 128 6(MSS) S++ M@1460 {C.NewM@1460TW}

Windows NT 4 standard, sp3, sp4, sp6 Y 128 6(MSSReq) S++ M@1460 {M@1459}

Windows NT 4 standard, sp3, sp4, sp6 Y 128 6(MSS) S++ M@1460 {M@1460}

Windows NT 4 standard, sp3, sp4, sp6 Y 128 6(MSS) S++ M@1460 {M@1460S}

Windows NT 4 standard, sp3, sp4, sp6 Y 128 6(MSS) S++ M@1460 {M@1460STW}

Windows NT 4 standard, sp3, sp4, sp6 Y 128 6(MSS) S++ M@1460 {M@1460T@0W}

Windows NT 4 standard, sp3, sp4, sp6 Y 128 6(MSS) S++ M@1460 {M@1460TW}

Windows 98, 98 SE Y 128 6(MSS) S++ M@1460 {C.NewM@1460TW}

Windows 98, 98 SE Y 128 6(MSSReq) S++ M@1460 {M@1459}

Windows 98, 98 SE Y 128 6(MSS) S++ M@1460 {M@1460}

Windows 98, 98 SE Y 128 6(MSS) S++ M@1460NNS {M@1460S}

Windows 98, 98 SE Y 128 6(MSS) S++ M@1460NNS {M@1460STW}

Windows 98, 98 SE Y 128 6(MSS) S++ M@1460 {M@1460T@0W}

Windows 98, 98 SE Y 128 6(MSS) S++ M@1460 {M@1460TW}

Windows Millennium standard Y 128 12(MSS) S++ M@1460NW@0NNT@0 {C.NewM@1460TW}

Windows Millennium standard Y 128 12(MSSReq) S++ M@1460 {M@1459}

Windows Millennium standard Y 128 12(MSS) S++ M@1460 {M@1460}

Windows Millennium standard Y 128 12(MSS) S++ M@1460NNS {M@1460S}

Windows Millennium standard Y 128 12(MSS) S++ M@1460NW@0NNT@0NNS {M@1460STW}

Windows Millennium standard Y 128 12(MSS) S++ M@1460NW@0NNT@0 {M@1460T@0W}

Windows Millennium standard Y 128 12(MSS) S++ M@1460NW@0NNT@0 {M@1460TW}

Windows 2000 standard, sp2, sp3, sp4 Y 128 12(MSS) S++ M@1460NW@0NNT@0 {C.NewM@1460TW}

Windows 2000 standard, sp2, sp3, sp4 Y 128 12(MSSReq) S++ M@1460 {M@1459}

Windows 2000 standard, sp2, sp3, sp4 Y 128 12(MSS) S++ M@1460 {M@1460}

Windows 2000 standard, sp2, sp3, sp4 Y 128 12(MSS) S++ M@1460NNS {M@1460S}

Windows 2000 standard, sp2, sp3, sp4 Y 128 12(MSS) S++ M@1460NW@0NNT@0NNS {M@1460STW}

Windows 2000 standard, sp2, sp3, sp4 Y 128 12(MSS) S++ M@1460NW@0NNT@0 {M@1460T@0W}

Windows 2000 standard, sp2, sp3, sp4 Y 128 12(MSS) S++ M@1460NW@0NNT@0 {M@1460TW}

Windows Net standard, XP Home, XP Professional Y 128 12(MSS) S++ M@1460NW@0NNT@0 {C.NewM@1460TW}

Windows Net standard, XP Home, XP Professional Y 128 12(MSSReq) S++ M@1460 {M@1459}

126

PassiveTest_TCP_SYNACK

ResultOSKey DF TTL WIN AckNb TCPecn TCPopts SYN_TCPecn SYN_SetOfTCPopts

Windows Net standard, XP Home, XP Professional Y 128 12(MSS) S++ M@1460 {M@1460}

Windows Net standard, XP Home, XP Professional Y 128 12(MSS) S++ M@1460NNS {M@1460S}

Windows Net standard, XP Home, XP Professional Y 128 12(MSS) S++ M@1460NW@0NNT@0NNS {M@1460STW}

Windows Net standard, XP Home, XP Professional Y 128 12(MSS) S++ M@1460NW@0NNT@0 {M@1460T@0W}

Windows Net standard, XP Home, XP Professional Y 128 12(MSS) S++ M@1460NW@0NNT@0 {M@1460TW}

Windows 2003 Server standard Y 128 12(MSS) S++ M@1460NW@0NNT@0 {C.NewM@1460TW}

Windows 2003 Server standard Y 128 12(MSSReq) S++ M@1460 {M@1459}

Windows 2003 Server standard Y 128 12(MSS) S++ M@1460 {M@1460}

Windows 2003 Server standard Y 128 12(MSS) S++ M@1460NNS {M@1460S}

Windows 2003 Server standard Y 128 12(MSS) S++ M@1460NW@0NNT@0NNS {M@1460STW}

Windows 2003 Server standard Y 128 12(MSS) S++ M@1460NW@0NNT@0 {M@1460T@0W}

Windows 2003 Server standard Y 128 12(MSS) S++ M@1460NW@0NNT@0 {M@1460TW}

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 127

Table 21. PassiveTest_TCP_RSTACK

PassiveTest_TCP_RSTACK

OS DF TTL WIN AckNb TCPecn Flag TCPopts
SYN

TCPecn

BEOS 5 N 255 0 S++ AR

FreeBSD 2.0.5, 2.1.0, 2.1.5, 2.1.6, 2.1.7.1, 2.2.0, 2.2.1,
2.2.2, 2.2.5, 2.2.6, 2.2.7, 2.2.8 N 64 0 S++ AR

FreeBSD 3.0, 3.1, 3.2, 3.3, 3.4, 3.5.1 N 64 0 S++ AR

FreeBSD 4.0, 4.1, 4.1.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.6.2, 4.7,
4.8, 5.0, 5.1 N 64 0 S++ AR

Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 N 255 0 S++ AR

Linux 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.2.5-15,
2.2.6, 2.2.7, 2.2.8, 2.2.9 N 255 0 S++ AR

Linux 2.2.10, 2.2.11, 2.2.12, 2.2.12-20, 2.2.13, 2.2.14,
2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22, 2.2.17, 2.2.18, 2.2.19 N 255 0 S++ AR

Linux 2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23, 2.2.24 N 255 0 S++ AR

Linux 2.4.0, 2.4.1, 2.4.2, 2.4.2-2, 2.4.3, 2.4.4, 2.4.4-4GB,
2.4.5, 2.4.6, 2.4.7, 2.4.8, 2.4.9 Y 255 0 S++ AR

Linux 2.4.10, 2.4.10-4GB, 2.4.11, 2.4.12, 2.4.13, 2.4.14,
2.4.15, 2.4.16, 2.4.17, 2.4.18, 2.4.18-3, 2.4.18-4GB Y 255 0 S++ AR

Linux 2.4.18-14, 2.4.19, 2.4.19-4GB, 2.4.20, 2.4.20-8,
2.4.21-0.13mdk Y 64 0 S++ AR

MacOS 7.5.3, 7.5.5, 7.6, 7.6.1, 8.0, 8.1 Y
echoed
67 0 S++ AR

MacOS 9.0
echoed
68 255 0 S++ AR

MacOS 9.1, 9.2.1, 9.2.2 Y 255 0 S++ AR

MacOS 10 10.1.0, 10.1.1, 10.1.2, 10.1.3, 10.1.4, 10.1.5,
10.2.1, 10.2.2, 10.2.3, 10.2.4, 10.2.5 N 64 0 S++ AR

MacOS 10 10.2.6
echoed
69 64 0 S++ AR

67 MacOS 7 to 8 and SunOS 5.5 to 5.7 echo the TTL value from the SYN packet.
68 Mac OS 9.0 appears to respond differently from the other Mac OS 9.x versions. Mac
OS 9.0 echoes the IP DF bit setting of the SYN. Mac OS 9.1, 9.2.1 and 9.2.2 do not
echo the DF bit.

128 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

PassiveTest_TCP_RSTACK

OS DF TTL WIN AckNb TCPecn Flag TCPopts
SYN

TCPecn

NetBSD 1.1 N 64 0 S++ AR

NetBSD 1.2, 1.2.1 N 64 0 S++ AR

NetBSD 1.3 , 1.3.1, 1.3.2, 1.3.3 N 64 0 S++ AR

NetBSD 1.4 , 1.4.1, 1.4.2, 1.4.3 N 64 0 S++ AR

NetBSD 1.5, 1.5.1, 1.5.2, 1.5.3 N 64 0 S++ AR

NetBSD 1.6, 1.6.1 N 64 0 S++ AR

Netware 4.11 N 128 0 S++ AR

Netware 4.11 sp9 Y 128 0 S++ AR

Netware 5, 5 sp6a Y 128 0 S++ AR

Netware 5.1, 5.1 sp6 Y 128 0 S++ AR

Netware 6, 6 sp3 Y 128 0 S++ AR

OpenBSD 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8 N 64 0 S++ AR

OpenBSD 2.9 Y 64 0 S++ AR

OpenBSD 3.0, 3.1, 3.2, 3.3 Y 64 0 S++ AR

QNX RTP 4, 6.0 N 64 echoed S++ AR Echoed

QNX RTP 6.1, 6.2, 6.2.1 N 64 0 S++ AR

SunOS 5.5, 5.5, 5.6, 5.7 Y echoed700 S++ AR

SunOS 5.8 Y 64 0 S++ AR

SunOS 5.9 Y 64 0 S++ AR

SunOS (Intel) 5.8 Y 64 0 S++ AR

Windows 95 N 32 0 S++ AR

Windows NT 3.51 standard N 32 0 S++ AR

69 Examination of the traffic traces reveals that Mac OS 10.2.6 echoed the IP DF bit
setting of the SYN. Mac OS 10.1.0, 10.1.1, 10.1.2, 10.1.3, 10.1.4, 10.1.5, 10.2.1,
10.2.2, 10.2.3, 10.2.4, 10.2.5 did not echo the DF bit.
70 MacOS 7 to 8 and SunOS 5.5 to 5.7 echo the TTL value from the SYN packet.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 129

PassiveTest_TCP_RSTACK

OS DF TTL WIN AckNb TCPecn Flag TCPopts
SYN

TCPecn

Windows 98, 98 SE N 128 0 S++ AR

Windows NT 4 standard, sp3, sp4, sp6 N 128 0 S++ AR

Windows Millennium standard N 128 0 S++ AR

Windows 2000 standard, sp2, sp3, sp4 N 128 0 S++ AR

Windows XP Home, Professional N 128 0 S++ AR

Windows Net standard N 128 0 S++ AR

Windows 2003 Server standard N 128 0 S++ AR

130

Table 22. PassiveTest_ICMP_Unreach

PassiveTest_ICMP_Unreach

OS DF TTL TOS UDPLen IntegIPLen IntegIPID IntegIPFlags IntegIPck IntegUDPck

FreeBSD 2.0.5, 2.1.0, 2.1.5, 2.1.6, 2.1.7.1 echoed 255 0 8 Y N N 0 0

FreeBSD 2.2.0, 2.2.1, 2.2.2, 2.2.5, 2.2.6, 2.2.7, 2.2.8,
2.2.9 echoed 255 0 8 Y N N nonzero 0

FreeBSD 3.0, 3.1, 3.2, 3.3, 3.4, 3.5.1 echoed 255 0 8 Y N N nonzero 0

FreeBSD 4.0, 4.1 echoed 255 0 8 Y N N nonzero 0

FreeBSD 4.1.1, 4.2, 4.3 echoed 255 0 8 Y Y Y nonzero 0

FreeBSD 4.4, 4.5, 4.6, 4.6.2, 4.7, 4.8, 5.0, 5.1 echoed 64 0 8 Y Y Y nonzero 0

Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 N 64 192 all Y Y Y nonzero Y

Linux 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.2.5-15,
2.2.6, 2.2.7, 2.2.8, 2.2.9, 2.2.10, 2.2.11, 2.2.12, 2.2.12-
20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22,
2.2.17, 2.2.18, 2.2.19, 2.2.20, 2.2.20-idepci, 2.2.21,
2.2.22, 2.2.23, 2.2.24 N 255 192 all Y Y Y nonzero Y

Linux 2.4.0, 2.4.1, 2.4.2, 2.4.2-2, 2.4.3, 2.4.4, 2.4.4-
4GB Y 255 192 all Y Y Y nonzero Y

Linux 2.4.5. 2.4.6, 2.4.7, 2.4.8, 2.4.9 N 255 192 all Y Y Y nonzero Y

Linux 2.4.10, 2.4.10-4GB, 2.4.11, 2.4.12, 2.4.13,
2.4.14, 2.4.15, 2.4.16, 2.4.17, 2.4.18, 2.4.18-3, 2.4.18-
4GB N 255 192 all Y Y Y nonzero Y

131

PassiveTest_ICMP_Unreach

OS DF TTL TOS UDPLen IntegIPLen IntegIPID IntegIPFlags IntegIPck IntegUDPck

Linux 2.4.18-14, 2.4.19, 2.4.19-4GB, 2.4.20, 2.4.20-8,
2.4.21-0.13mdk, N 64 192 all Y Y Y nonzero Y

MacOS 7.5.3, 7.5.5, 7.6, 7.6.1, 8.0, 8.1 Y 255 0 64 Y Y Y nonzero Y

MacOS 9 9.0 N 255 0 64 Y Y Y nonzero Y

MacOS 9 9.1, 9.2.1, 9.2.2 Y 255 0 64 Y Y Y nonzero Y

MacOS 10.1.0, 10.1.1, 10.1.2, 10.1.3, 10.1.4, 10.1.5 echoed 255 0 8 Y Y Y nonzero 0

MacOS 10.2.1, 10.2.2, 10.2.3, 10.2.4, 10.2.5, 10.2.6 echoed 64 0 8 Y Y Y nonzero 0

NetBSD 1.1, 1.2, 1.2.1 echoed 255 0 8 + N N 0 0

NetBSD 1.3, 1.3.1, 1.3.2, 1.3.3 echoed 255 0 8 Y N N 0 0

NetBSD 1.4 , 1.4.1, 1.4.2, 1.4.3 N 255 0 8 Y Y Y nonzero Y

NetBSD 1.5, 1.5.1, 1.5.2, 1.5.3 N 255 0 8 Y Y Y nonzero Y

NetBSD 1.6, 1.6.1 N 255 0 8 Y Y Y nonzero Y

Netware 4.11, 4.11 sp9 N 128 0 8 Y Y Y nonzero Y

Netware 5, 5 sp6a N 128 0 8 Y Y Y nonzero Y

Netware 5.1, 5.1 sp6 N 128 0 8 Y Y Y nonzero Y

Netware 6, 6 sp3 N 128 0 8 Y Y Y nonzero Y

OpenBSD 2.0, 2.1 echoed 255 0 8 + N N 0 0

132

PassiveTest_ICMP_Unreach

OS DF TTL TOS UDPLen IntegIPLen IntegIPID IntegIPFlags IntegIPck IntegUDPck

OpenBSD 2.2, 2.3, 2.4 echoed 255 0 8 Y N N 0 0

OpenBSD 2.5 N 255 0 8 Y Y Y nonzero Y

OpenBSD 2.6, 2.7, 2.8, 2.9 N 255 0 8 - Y Y nonzero Y

OpenBSD 3.0, 3.1, 3.2, 3.3 N 255 0 8 - Y Y nonzero Y

QNX RTP 6.1 N 255 0 8 Y Y Y 0 0

QNX RTP 6.2, 6.2.1 N 255 0 8 Y Y Y nonzero Y

SunOS 5.5, 5.5.1, 5.6, 5.7, 5.8, 5.9 Y 255 0 64 Y Y Y nonzero Y

SunOS (Intel) 5.8 Y 255 0 64 Y Y Y nonzero Y

Windows 95 N 32 0 8 Y Y Y nonzero Y

Windows NT 3.51 standard N 32 0 8 Y Y Y nonzero Y

Windows 98, 98 SE N 128 0 8 Y Y Y nonzero Y

Windows NT 4 standard, sp3, sp4, sp6 N 128 0 8 Y Y Y nonzero Y

Windows Millennium standard N 128 0 8 Y Y Y nonzero Y

Windows 2000 standard, sp2, sp3, sp4 N 128 0 8 Y Y Y nonzero Y

Windows XP Home, Professional N 128 0 8 Y Y Y nonzero Y

133

PassiveTest_ICMP_Unreach

OS DF TTL TOS UDPLen IntegIPLen IntegIPID IntegIPFlags IntegIPck IntegUDPck

Windows Net standard N 128 0 all Y Y Y nonzero Y

Windows 2003 Server standard N 128 0 all Y Y Y nonzero Y

134 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

Table 23. PassiveTest_ICMP_Echo

PassiveTest_ICMP_Echo

OS Resp DF TTL TOS IPID ICMPCode

BEOS 5 Y N 2550 71 nonzero echoed

FreeBSD 2.0.5, 2.1.0, 2.1.5, 2.1.6, 2.1.7.1, 2.2.0, 2.2.1, 2.2.2, 2.2.5,
2.2.6, 2.2.7, 2.2.8 Y echoed 255echoed nonzero echoed

FreeBSD 3.0, 3.1, 3.2, 3.3, 3.4, 3.5.1 Y echoed 255echoed nonzero echoed

FreeBSD 4.0, 4.1, 4.1.1, 4.2, 4.3 Y echoed 255echoed nonzero echoed

FreeBSD 4.4 , 4.5, 4.6, 4.6.2, 4.7, 4.8, 5.0, 5.1 Y echoed 64echoed nonzero echoed

Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 Y N 64echoed nonzero echoed

Linux 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.2.5-15, 2.2.6, 2.2.7,
2.2.8, 2.2.9 Y N 255echoed nonzero echoed

Linux 2.2.10, 2.2.11, 2.2.12, 2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5,
2.2.15, 2.2.16, 2.2.16-22, 2.2.17, 2.2.18, 2.2.19 Y N 255echoed nonzero echoed

Linux 2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23, 2.2.24 Y N 255echoed nonzero echoed

Linux 2.4.0, 2.4.1, 2.4.2, 2.4.2-2, 2.4.3, 2.4.4, 2.4.4-4GB Y Y 255echoed 0 echoed

Linux 2.4.5. 2.4.6, 2.4.7, 2.4.8, 2.4.9 Y N 255echoed nonzero echoed

Linux 2.4.10, 2.4.10-4GB, 2.4.11, 2.4.12, 2.4.13, 2.4.14, 2.4.15,
2.4.16, 2.4.17, 2.4.18, 2.4.18-3, 2.4.18-4GB Y N 255echoed nonzero echoed

Linux 2.4.18-14 Y N 64echoed nonzero echoed

Linux 2.4.19, 2.4.19-4GB Y N 64echoed nonzero echoed

Linux 2.4.20, 2.4.20-8, 2.4.21-0.13mdk Y N 64echoed nonzero echoed

MacOS 7.5.3, 7.5.5, 7.6, 7.6.1 Y Y 255echoed nonzero echoed

MacOS 8.0, 8.1 Y Y 255echoed nonzero echoed

MacOS 9.0 Y echoed 72 255echoed nonzero echoed

MacOS 9.1, 9.2.1, 9.2.2 Y Y 255echoed nonzero echoed

MacOS 10.0.0, 10.1.0, 10.1.1, 10.1.2, 10.1.3, 10.1.4, 10.1.5 Y echoed 255echoed nonzero echoed

MacOS 10.2.1, 10.2.2, 10.2.3, 10.2.4, 10.2.5, 10.2.6 Y echoed 64echoed nonzero echoed

NetBSD 1.1 Y echoed 255echoed nonzero echoed

NetBSD 1.2, 1.2.1 Y echoed 255echoed nonzero echoed

NetBSD 1.3 , 1.3.1, 1.3.2, 1.3.3 Y echoed 255echoed nonzero echoed

NetBSD 1.4 , 1.4.1, 1.4.2, 1.4.3 Y echoed 255echoed nonzero echoed

NetBSD 1.5, 1.5.1, 1.5.2, 1.5.3 Y echoed 255echoed nonzero echoed

NetBSD 1.6, 1.6.1 Y N 73 255echoed nonzero echoed

Netware 4.11, 4.11 sp9 Y N 128echoed nonzero echoed

Netware 5, 5 sp6a Y N 128echoed nonzero echoed

Netware 5.1 Y N 1280 nonzero echoed

Netware 5.1 sp6 , 6, 6 sp3 Y N 128echoed nonzero echoed

OpenBSD 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9 Y echoed 255echoed nonzero echoed

OpenBSD 3.0, 3.1, 3.2, 3.3 Y echoed 255echoed nonzero echoed

QNX RTP 4 N N/A -1-1 N/A N/A

71 BeOS, Netware 5.1, and recent Windows systems do not echo the IP TOS from the
stimulus.
72 MacOS 9.0 echoes the IP DF bit setting while other Mac OS 9 set this bit to 1
independently from the stimulus.
73 NetBSD 1.6 and 1.6.1 set the IP DF bit to 0 while other NetBSD echo the setting of
the stimulus.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 135

PassiveTest_ICMP_Echo

OS Resp DF TTL TOS IPID ICMPCode

QNX RTP 6.0 N N/A -1-1 N/A N/A

QNX RTP 6.1, 6.2 Y echoed 255echoed nonzero echoed

QNX RTP 6.2.1 Y N 255echoed nonzero echoed

SunOS 5.5, 5.5.1, 5.6, 5.7, 5.8, 5.9 Y Y 255echoed nonzero echoed

SunOS (Intel) 5.8 Y Y 255echoed nonzero echoed

Windows 95 Y echoed 32echoed nonzero 0

Windows NT 3.51 standard Y echoed 32echoed nonzero 0

Windows 98, 98 SE Y echoed 128echoed nonzero 0

Windows NT 4 standard, sp3, sp4, sp6 Y echoed 128echoed nonzero 0

Windows Millennium standard Y echoed 128echoed nonzero 0

Windows 2000 standard, sp2, sp3, sp4 Y echoed 128074 nonzero 0

Windows XP Home, Professional Y echoed 1280 nonzero 0

Windows Net standard Y echoed 1280 nonzero 0

Windows 2003 Server standard Y echoed 1280 nonzero 0

Table 24. PassiveTest_ICMP_Info

PassiveTest_ICMP_Info

OS Resp DF TTL TOS IPID

BEOS 5 N N/A -1 -1N/A

FreeBSD 2.0.5, 2.1.0, 2.1.5, 2.1.6, 2.1.7.1, 2.2.0, 2.2.1, 2.2.2, 2.2.5, 2.2.6, 2.2.7, 2.2.8 N N/A -1 -1N/A

FreeBSD 3.0, 3.1, 3.2, 3.3, 3.4, 3.5.1 N N/A -1 -1N/A

FreeBSD 4.0, 4.1, 4.1.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.6.2, 4.7, 4.8, 5.0, 5.1 N N/A -1 -1N/A

Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 N N/A -1 -1N/A

Linux 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.2.5-15, 2.2.6, 2.2.7, 2.2.8, 2.2.9 N N/A -1 -1N/A

Linux 2.2.10, 2.2.11, 2.2.12, 2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22,
2.2.17, 2.2.18, 2.2.19 N N/A -1 -1N/A

Linux 2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23, 2.2.24 N N/A -1 -1N/A

Linux 2.4.0, 2.4.1, 2.4.2, 2.4.2-2, 2.4.3, 2.4.4, 2.4.4-4GB, 2.4.5, 2.4.6, 2.4.7, 2.4.8, 2.4.9 N N/A -1 -1N/A

Linux 2.4.10, 2.4.10-4GB, 2.4.11, 2.4.12, 2.4.13, 2.4.14, 2.4.15, 2.4.16, 2.4.17, 2.4.18, 2.4.18-
3, 2.4.18-4GB, 2.4.18-14, 2.4.19, 2.4.19-4GB, 2.4.20, 2.4.20-8, 2.4.21-0.13mdk N N/A -1 -1N/A

MacOS 7.5.3, 7.5.5, 7.6, 7.6.1 N N/A -1 -1N/A

MacOS 8.0, 8.1 N N/A -1 -1N/A

MacOS 9.0, 9.1, 9.2.1, 9.2.2 N N/A -1 -1N/A

MacOS 10.1.0, 10.1.1, 10.1.2, 10.1.3, 10.1.4, 10.1.5, 10.2.1, 10.2.2, 10.2.3, 10.2.4, 10.2.5,
10.2.6 N N/A -1 -1N/A

NetBSD 1.1 N N/A -1 -1N/A

NetBSD 1.2, 1.2.1 N N/A -1 -1N/A

NetBSD 1.3 , 1.3.1, 1.3.2, 1.3.3 N N/A -1 -1N/A

NetBSD 1.4 , 1.4.1, 1.4.2, 1.4.3 N N/A -1 -1N/A

NetBSD 1.5, 1.5.1, 1.5.2, 1.5.3 N N/A -1 -1N/A

NetBSD 1.6, 1.6.1 N N/A -1 -1N/A

Netware 4.11, 4.11 sp9 N N/A -1 -1N/A

Netware 5, 5 sp6a, N N/A -1 -1N/A

74 BeOS, Netware 5.1, and recent Windows systems do not echo the IP TOS from the
stimulus.

136 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

PassiveTest_ICMP_Info

OS Resp DF TTL TOS IPID

Netware 5.1, 5.1 sp6 N N/A -1 -1N/A

Netware 6 , 6 sp3 N N/A -1 -1N/A

OpenBSD 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9 N N/A -1 -1N/A

OpenBSD 3.0, 3.1, 3.2, 3.3 N N/A -1 -1N/A

QNX RTP 4, 6.0, 6.1, 6.2, 6.2.1 N N/A -1 -1N/A

SunOS 5.5, 5.5.1, 5.6, 5.7, 5.8, 5.9 N N/A -1 -1N/A

SunOS (Intel) 5.8 N N/A -1 -1N/A

Windows 95 N N/A -1 -1N/A

Windows NT 3.51 standard N N/A -1 -1N/A

Windows 98, 98 SE N N/A -1 -1N/A

Windows NT 4 standard, sp3, sp4, sp6 N N/A -1 -1N/A

Windows Millennium standard N N/A -1 -1N/A

Windows 2000 standard, sp2, sp3, sp4 N N/A -1 -1N/A

Windows XP Home, Professional N N/A -1 -1N/A

Windows Net standard N N/A -1 -1N/A

Windows 2003 Server standard N N/A -1 -1N/A

Table 25. PassiveTest_ICMP_TS

PassiveTest_ICMP_TS

OS Resp DF TTL TOS IPID

BEOS 5 N N/A -1 N/AN/A

FreeBSD 2.0.5, 2.1.0, 2.1.5, 2.1.6, 2.1.7.1, 2.2.0, 2.2.1, 2.2.2, 2.2.5, 2.2.6, 2.2.7,
2.2.8 Y echoed 255 echoednonzero

FreeBSD 3.0, 3.1, 3.2, 3.3, 3.4, 3.5.1 Y echoed 255 echoednonzero

FreeBSD 4.0, 4.1, 4.1.1, 4.2, 4.3 Y echoed 255 echoednonzero

FreeBSD 4.4, 4.5, 4.6, 4.6.2, 4.7, 4.8 Y echoed 64 echoednonzero

FreeBSD 5.0, 5.1 Y echoed 64 echoednonzero

Linux 2.0.30, 2.32, 2.0.36 (all Red Hat) N N/A -1 N/AN/A

Linux 2.0.29, 2.0.34, 2.0.36 (all Debian) Y N 64 echoednonzero

Linux 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.2.5-15, 2.2.6, 2.2.7, 2.2.8, 2.2.9 Y N 255 echoednonzero

Linux 2.2.10, 2.2.11, 2.2.12, 2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16,
2.2.16-22, 2.2.17, 2.2.18, 2.2.19 Y N 255 echoednonzero

Linux 2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23, 2.2.24 Y N 255 echoednonzero

Linux 2.4.0, 2.4.1, 2.4.2, 2.4.2-2, 2.4.3, 2.4.4, 2.4.4-4GB Y Y 255 echoed0

Linux 2.4.5, 2.4.6, 2.4.7, 2.4.8, 2.4.9 Y N 255 echoednonzero

Linux 2.4.10, 2.4.10-4GB, 2.4.11, 2.4.12, 2.4.13, 2.4.14, 2.4.15, 2.4.16, 2.4.17,
2.4.18, 2.4.18-3, 2.4.18-4GB Y N 255 echoednonzero

Linux 2.4.18-14, 2.4.19, 2.4.19-4GB, 2.4.20, 2.4.20-8, 2.4.21-0.13mdk Y N 64 echoednonzero

MacOS 7.5.3, 7.5.5, 7.6, 7.6.1 N N/A -1 N/AN/A

MacOS 8.0, 8.1 N N/A -1 N/AN/A

MacOS 9.0 N N/A -1 N/AN/A

MacOS 9.1, 9.2.1, 9.2.2 N N/A -1 N/AN/A

MacOS 10.1.0, 10.1.1, 10.1.2, 10.1.3, 10.1.4, 10.1.5 Y echoed 255 echoednonzero

MacOS 10.2.1, 10.2.2, 10.2.3, 10.2.4, 10.2.5, 10.2.6 Y echoed 64 echoednonzero

NetBSD 1.1 Y echoed 255 echoednonzero

NetBSD 1.2, 1.2.1 Y echoed 255 echoednonzero

NetBSD 1.3 , 1.3.1, 1.3.2, 1.3.3 Y echoed 255 echoednonzero

NetBSD 1.4 , 1.4.1, 1.4.2, 1.4.3 Y echoed 255 echoednonzero

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 137

PassiveTest_ICMP_TS

OS Resp DF TTL TOS IPID

NetBSD 1.5, 1.5.1, 1.5.2, 1.5.3 Y echoed 255 echoednonzero

NetBSD 1.6, 1.6.1 Y N 75 255 echoednonzero

Netware 4.11, 4.11 sp9 N N/A -1 N/AN/A

Netware 5, 5 sp6a N N/A -1 N/AN/A

Netware 5.1, 5.1 sp6 N N/A -1 N/AN/A

Netware 6, 6 sp3 N N/A -1 N/AN/A

OpenBSD 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9 Y echoed 255 echoednonzero

OpenBSD 3.0, 3.1, 3.2, 3.3 Y echoed 255 echoednonzero

QNX RTP 4 N N/A -1 N/AN/A

QNX RTP 6.0 N N/A -1 N/AN/A

QNX RTP 6.1, 6.2 Y echoed 255 echoednonzero

QNX RTP 6.2.1 Y N 255 echoednonzero

SunOS 5.5, 5.5.1, 5.6, 5.7, 5.8, 5.9 Y Y 255 echoednonzero

SunOS (Intel) 5.8 Y Y 255 echoednonzero

Windows 95 N N/A -1 N/AN/A

Windows NT 3.51 standard N N/A -1 N/AN/A

Windows 98, 98 SE Y N 128 0 76nonzero

Windows NT 4 standard, sp3, sp4, sp6 N N/A -1 N/AN/A

Windows Millennium standard Y N 128 0nonzero

Windows 2000 standard, sp2, sp3, sp4 Y N 128 0nonzero

Windows XP Home, Professional Y N 128 0nonzero

Windows Net standard Y N 128 0nonzero

Windows 2003 Server standard Y N 128 0nonzero

Table 26. PassiveTest_ICMP_Mask

PassiveTest_ICMP_Mask

OS Resp DF TTL TOS IPID

BEOS 5 N N/A N/A N/A N/A

FreeBSD 2.0.5, 2.1.0, 2.1.5, 2.1.6, 2.1.7.1, 2.2.0, 2.2.1, 2.2.2,
2.2.5, 2.2.6, 2.2.7, 2.2.8 N N/A N/A N/A N/A

FreeBSD 3.0, 3.1, 3.2, 3.3, 3.4, 3.5.1 N N/A N/A N/A N/A

FreeBSD 4.0, 4.1, 4.1.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.6.2, 4.7, 4.8,
5.0, 5.1 N N/A N/A N/A N/A

Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 N N/A N/A N/A N/A

Linux 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.2.5-15, 2.2.6,
2.2.7, 2.2.8, 2.2.9 N N/A N/A N/A N/A

Linux 2.2.10, 2.2.11, 2.2.12, 2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5,
2.2.15, 2.2.16, 2.2.16-22, 2.2.17, 2.2.18, 2.2.19 N N/A N/A N/A N/A

Linux 2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23, 2.2.24 N N/A N/A N/A N/A

Linux 2.4.0, 2.4.1, 2.4.2, 2.4.2-2, 2.4.3, 2.4.4, 2.4.4-4GB, 2.4.5,
2.4.6, 2.4.7, 2.4.8, 2.4.9 N N/A N/A N/A N/A

75 NetBSD 1.6 and 1.6.1 set the DF bit to 0 while other NetBSD echo the setting of the
stimulus.
76 Windows systems do not echo the IP TOS from the stimulus.

138 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

PassiveTest_ICMP_Mask

OS Resp DF TTL TOS IPID

Linux 2.4.10, 2.4.10-4GB, 2.4.11, 2.4.12, 2.4.13, 2.4.14, 2.4.15,
2.4.16, 2.4.17, 2.4.18, 2.4.18-3, 2.4.18-4GB, 2.4.18-14, 2.4.19,
2.4.19-4GB, 2.4.20, 2.4.20-8, 2.4.21-0.13mdk N N/A N/A N/A N/A

MacOS 7.5.3, 7.5.5, 7.6, 7.6.1 Y Y 255 echoed nonzero

MacOS 8.0, 8.1 Y Y 255 echoed nonzero

MacOS 9.0 Y echoed 77 255 echoed nonzero

MacOS 9.1, 9.2.1, 9.2.2 Y Y 255 echoed nonzero

MacOS 10.1.0, 10.1.1, 10.1.2, 10.1.3, 10.1.4, 10.1.5, 10.2.1,
10.2.2, 10.2.3, 10.2.4, 10.2.5, 10.2.6 N N/A N/A N/A N/A

NetBSD 1.1 N N/A N/A N/A N/A

NetBSD 1.2, 1.2.1 N N/A N/A N/A N/A

NetBSD 1.3 , 1.3.1, 1.3.2, 1.3.3 N N/A N/A N/A N/A

NetBSD 1.4 , 1.4.1, 1.4.2, 1.4.3 N N/A N/A N/A N/A

NetBSD 1.5, 1.5.1, 1.5.2, 1.5.3 N N/A N/A N/A N/A

NetBSD 1.6, 1.6.1 N N/A N/A N/A N/A

Netware 4.11, 4.11 sp9 N N/A N/A N/A N/A

Netware 5, 5 sp6a Y N echoed echoed nonzero

Netware 5.1 78 Y N echoed 0 nonzero

Netware 5.1 sp6 N N/A N/A N/A N/A

Netware 6 Y N echoed echoed nonzero

Netware 6 sp3 N N/A N/A N/A N/A

OpenBSD 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9 N N/A N/A N/A N/A

OpenBSD 3.0, 3.1, 3.2, 3.3 N N/A N/A N/A N/A

QNX RTP 4 N N/A N/A N/A N/A

QNX RTP 6.0, 6.1, 6.2, 6.2.1 N N/A N/A N/A N/A

SunOS 5.5, 5.5.1, 5.6, 5.7, 5.8, 5.9 Y Y 255 echoed nonzero

SunOS (Intel) 5.8 Y Y 255 echoed nonzero

Windows 95 Y N 32 0 79 nonzero

Windows NT 3.51 standard Y N 32 0 nonzero

Windows 98, 98 SE Y N 128 0 nonzero

Windows NT 4 standard, sp3 Y N 128 0 nonzero

Windows NT 4 sp4, sp6 N N/A N/A N/A N/A

Windows Millennium standard N N/A N/A N/A N/A

Windows 2000 standard, sp2, sp3, sp4 N N/A N/A N/A N/A

Windows XP Home, Professional N N/A N/A N/A N/A

Windows Net standard N N/A N/A N/A N/A

Windows 2003 Server standard N N/A N/A N/A N/A

Table 27. PassiveTest_ICMP_ID_SEQ

PassiveTest_ICMP_ID_SEQ

OS ICMPIDClass IDInvariant ICMPSeqClass SeqInvariant

77 MacOS 9.0 echoes the DF bit while other Mac OS 9 do not.
78 Service packs of Novell Netware 5.1 and 6 prevent the sytem from giving away mask
information.
79 Windows systems do not echo the IP TOS from the stimulus.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 139

PassiveTest_ICMP_ID_SEQ

OS ICMPIDClass IDInvariant ICMPSeqClass SeqInvariant

BEOS 5 I 1 I 100

FreeBSD 2.0.5, 2.1.0, 2.1.5, 2.1.6, 2.1.7.1, 2.2.0, 2.2.1, 2.2.2, 2.2.5, 2.2.6,
2.2.7, 2.2.8 TDI (or I) 100 I 100

FreeBSD 3.0, 3.1, 3.2, 3.3, 3.4, 3.5.1 TDI (or I) 100 I 100

FreeBSD 4.0, 4.1, 4.1.1, 4.2, 4.3, 4.4 , 4.5, 4.6, 4.6.2, 4.7, 4.8, TDI (or I) 100 I 100

FreeBSD 5.0, 5.1 TDI (or I) 100 I 1 80

Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 TDI (or I) 100 I 100
Linux 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.2.5-15, 2.2.6, 2.2.7, 2.2.8,
2.2.9 TDI (or I) 100 I 100

Linux 2.2.10, 2.2.11, 2.2.12, 2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15,
2.2.16, 2.2.16-22, 2.2.17, 2.2.18, 2.2.19 TDI (or I) 100 I 100

Linux 2.2.16 (S.u.S.E 7.0), Linux 2.2.18 (S.u.S.E 7.1) TDI (or I) 100 I 1 81

Linux 2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23, 2.2.24 TDI (or I) 100 I 100

Linux 2.4.0, 2.4.1, 2.4.2, 2.4.2-2, 2.4.3, 2.4.4, 2.4.5, 2.4.6, 2.4.7, 2.4.8, 2.4.9 TDI (or I) 100 I 100

Linux 2.4.4-4GB (S.u.S.E 7.2) TDI (or I) 100 I 1 82

Linux 2.4.10, 2.4.10-4GB, 2.4.11, 2.4.12, 2.4.13, 2.4.14, 2.4.15, 2.4.16,
2.4.17, 2.4.18, 2.4.18-3, 2.4.18-4GB,2.4.18-14, 2.4.19, 2.4.19-4GB, 2.4.20 TDI (or I) 100 I 100

Linux 2.4.20-8 (RedHat 9) 83 TDI (or I) 100 I 1

Linux 2.4.21-0.13mdk (Mandrake PPC 9.1) TDI (or I) 1 I 1

MacOS 7.5.3, 7.5.5, 7.6, 7.6.1, 8.0, 8.1, 9.0, 9.1, 9.2.2 (using TCPMac Ping) I 1 C 0

MacOS 10.0.0, 10.1.0, 10.1.1, 10.1.2, 10.1.3, 10.1.4, 10.1.5, 10.2.1, 10.2.2,
10.2.3, 10.2.4, 10.2.5, 10.2.6 TDI (or I) 1 I 1

NetBSD 1.1, 1.2, 1.2.1 84 TDI (or I) 100 I 100

NetBSD 1.3, 1.3.1, 1.3.2, 1.3.3 TDI (or I) 100 I 1

NetBSD 1.4, 1.4.1, 1.4.2, 1.4.3, 1.5, 1.5.1, 1.5.2, 1.5.3, 1.6, 1.6.1 TDI (or I) 1 I 1

Netware 4.11, 4.11 sp9 I 6000 I 100

OpenBSD 2.0, 2.1 TDI (or I) 100 I 100

OpenBSD 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3 RD -1 I 1

QNX RTP 4, 6.0, 6.1, 6.2 TDI (or I) 10 I 1

QNX RTP 6.2.1 I 2000 I 1

SunOS 5.5, 5.5.1, 5.6, 5.7, 5.8, 5.9 TDI (or I) 1 I 1

SunOS (Intel) 5.8 TDI (or I) 1 I 1

Windows 95 C 100 IGlobal 100

Windows NT 3.51 standard C 100 IGlobal 100

Windows 98, 98 SE C 200 IGlobal 100

Windows NT 4 standard, sp3, sp4, sp6 C 100 IGlobal 100

Windows Millennium standard C 300 IGlobal 100

Windows 2000 standard, sp2, sp3, sp4 C 200 IGlobal 100

Windows XP Home, Professional C 200 IGlobal 100

Windows Net standard C 200 IGlobal 100

Windows 2003 Server standard C 200 IGlobal 100

80 FreeBSD 5.0 and 5.1 increments the ICMP Sequence number by 0x0001 while older
FreeBSD increment it by 0x0100.
81 Linux 2.2.16 and 2.2.18 distributed by S.u.S.E have a signature different than other
2.2.16 and 2.2.18 kernels.
82 Linux 2.4.4-4GB (S.u.S.E.) has a different signature than other 2.4.4 kernels.
83 The RedHat 9 and Mandrake PPC 9.1 distributions have their own distinct signatures.
84 There are three different signatures to distinguish between the NetBSD versions.

140

Table 28. PassiveTest_ICMP_ID (Subtest of PassiveTest_ICMP_ID_SEQ)

PassiveTest_ICMP_ID (Subtest of PassiveTest_ICMP_ID_SEQ)

ResultOSKey ICMPID DF TOS DataLen ConstantData

BEOS 5 other N 0 30 0000000000000000000008090A0B0C0D0E0F10111213
FreeBSD 2.0.5, 2.1.0, 2.1.5, 2.1.6,
2.1.7.1, 2.2.0, 2.2.1, 2.2.2, 2.2.5, 2.2.6,
2.2.7, 2.2.8 other N 0 56 08090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F202122232425262728292A2B2C2D2E2F3031323334353637

FreeBSD 3.0, 3.1, 3.2, 3.3, 3.4, 3.5.1 other N 0 56 08090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F202122232425262728292A2B2C2D2E2F3031323334353637

FreeBSD 4.0, 4.1, 4.1.1, 4.2, 4.3, 4.4 ,
4.5, 4.6, 4.6.2, 4.7, 4.8 other N 0 56 08090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F202122232425262728292A2B2C2D2E2F3031323334353637

FreeBSD 5.0 , 5.1 other N 0 56 08090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F202122232425262728292A2B2C2D2E2F3031323334353637
Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34,
2.0.36 other N 0 56 08090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F202122232425262728292A2B2C2D2E2F3031323334353637

Linux 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.2.4,
2.2.5, 2.2.5-15, 2.2.6, 2.2.7, 2.2.8, 2.2.9 other N 0 56 08090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F202122232425262728292A2B2C2D2E2F3031323334353637
Linux 2.2.10, 2.2.11, 2.2.12, 2.2.12-20,
2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16,
2.2.16-22, 2.2.17, 2.2.18, 2.2.19,2.2.20,
2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23,
2.2.24 other N 0 56 08090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F202122232425262728292A2B2C2D2E2F3031323334353637

Linux 2.4.0, 2.4.1, 2.4.2, 2.4.2-2, 2.4.3,
2.4.4, 2.4.4-4GB, 2.4.5, 2.4.6, 2.4.7,
2.4.8, 2.4.9 other Y 0 56 08090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F202122232425262728292A2B2C2D2E2F3031323334353637

Linux 2.4.10, 2.4.10-4GB, 2.4.11,
2.4.12, 2.4.13, 2.4.14, 2.4.15, 2.4.16,
2.4.17, 2.4.18, 2.4.18-3, 2.4.18-
4GB,2.4.18-14, 2.4.19, 2.4.19-4GB,
2.4.20, 2.4.20-8, 2.4.21-0.13mdk other Y 0 56 08090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F202122232425262728292A2B2C2D2E2F3031323334353637

MacOS 7.5.3, 7.5.3, 7.5.5, 7.6, 7.6.1, 8.0,
8.1 (using TCPMac Ping) other Y 0 56 00

MacOS 9 9.0 (using TCPMac Ping) other N85 0 56 00

85 MacOS 9.0 appears to have a different signature than MacOS 9.1 and 9.2. This requires further investigation.

141

PassiveTest_ICMP_ID (Subtest of PassiveTest_ICMP_ID_SEQ)

ResultOSKey ICMPID DF TOS DataLen ConstantData

MacOS 9 9.1, 9.2.1, 9.2.2 (using TCPMac
Ping) other Y 0 56 00

MacOS 10.0.0, 10.1.0, 10.1.1, 10.1.2,
10.1.3, 10.1.4, 10.1.5, 10.2.1, 10.2.2,
10.2.3, 10.2.4, 10.2.5, 10.2.6 other N 0 56 08090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F202122232425262728292A2B2C2D2E2F3031323334353637

NetBSD 1.1, 1.2, 1.2.1, 1.3, 1.3.1, 1.3.2,
1.3.3 other N 0 56 08090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F202122232425262728292A2B2C2D2E2F3031323334353637

NetBSD 1.4, 1.4.1, 1.4.2, 1.4.3, 1.5,
1.5.1, 1.5.2, 1.5.3, 1.6, 1.6.1 other N 0 56 08090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F202122232425262728292A2B2C2D2E2F3031323334353637

Netware 4.11, 4.11 sp9 other N 0 12 0000

Netware 5, 5 sp6a, 5.1, 5.1 sp6 other N 0 12 0000

Netware 6, 6 sp3 other N 0 12 0000

OpenBSD 2.0, 2.1, 2.2, 2.3 other N 0 56 08090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F202122232425262728292A2B2C2D2E2F3031323334353637

OpenBSD 2.4 other N 0 56 101112131415161718191A1B1C1D1E1F202122232425262728292A2B2C2D2E2F3031323334353637000000000000000086

OpenBSD 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1,
3.2, 3.3 other N 0 56 08090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F202122232425262728292A2B2C2D2E2F3031323334353637

QNX RTP 4, 6.0, 6.1, 6.2, 6.2.1 other N 0 56 08090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F202122232425262728292A2B2C2D2E2F3031323334353637

SunOS 5.5, 5.5.1, 5.6, 5.7, 5.8, 5.9 other Y 0 56 08090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F202122232425262728292A2B2C2D2E2F3031323334353637

SunOS (Intel) 5.8 other Y 0 56 08090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F202122232425262728292A2B2C2D2E2F3031323334353637

Windows 95 100 N 0 32 6162636465666768696A6B6C6D6E6F7071727374757677616263646566676869

Windows NT 3.51 standard 100 N 0 32 6162636465666768696A6B6C6D6E6F7071727374757677616263646566676869

Windows 98, 98 SE 200 N 0 32 6162636465666768696A6B6C6D6E6F7071727374757677616263646566676869

Windows NT 4 standard, sp3, sp4, sp6 100 N 0 32 6162636465666768696A6B6C6D6E6F7071727374757677616263646566676869

Windows Millennium standard 300 N 0 32 6162636465666768696A6B6C6D6E6F7071727374757677616263646566676869

Windows 2000 standard, sp2, sp3, sp4 200 N 0 32 6162636465666768696A6B6C6D6E6F7071727374757677616263646566676869

Windows XP Home, Professional 200 N 0 32 6162636465666768696A6B6C6D6E6F7071727374757677616263646566676869

Windows Net standard 200 N 0 32 6162636465666768696A6B6C6D6E6F7071727374757677616263646566676869

Windows 2003 Server standard 200 N 0 32 6162636465666768696A6B6C6D6E6F7071727374757677616263646566676869

86 The data transmitted by the ping utility version installed by default on OpenBSD 2.4 begins at a 8-byte offset from the usual data string. The
ping version is 1.35. The error was fixed in later releases.

142 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

Table 29. PassiveTest_ICMP_SEQ (Subtest of PassiveTest_ICMP_ID_SEQ)

PassiveTest_ICMP_SEQ (Subtest of PassiveTest_ICMP_ID_SEQ)

ResultOSKey ICMPSeqClass SeqInvariant

BEOS 5 I 100

FreeBSD 2.0.5, 2.1.0, 2.1.5, 2.1.6, 2.1.7.1, 2.2.0, 2.2.1, 2.2.2, 2.2.5, 2.2.6, 2.2.7, 2.2.8 I 100

FreeBSD 3.0, 3.1, 3.2, 3.3, 3.4, 3.5.1 I 100

FreeBSD 4.0, 4.1, 4.1.1, 4.2, 4.3, 4.4 , 4.5, 4.6, 4.6.2, 4.7, 4.8 I 100

FreeBSD 5.0 , 5.1 I 1

Linux 2.0.29, 2.0.30, 2.0.32, 2.0.34, 2.0.36 I 100

Linux 2.2.0, 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.2.5-15, 2.2.6, 2.2.7, 2.2.8, 2.2.9 I 100

Linux 2.2.10, 2.2.11, 2.2.12, 2.2.12-20, 2.2.13, 2.2.14, 2.2.14-5, 2.2.15, 2.2.16, 2.2.16-22,
2.2.17, 2.2.18, 2.2.19,2.2.20, 2.2.20-idepci, 2.2.21, 2.2.22, 2.2.23, 2.2.24 I 100

Linux 2.2.16 (S.u.S.E 7.0), Linux 2.2.18 (S.u.S.E 7.1) I 1

Linux 2.4.0, 2.4.1, 2.4.2, 2.4.2-2, 2.4.3, 2.4.4, 2.4.5, 2.4.6, 2.4.7, 2.4.8, 2.4.9 I 100

Linux 2.4.4-4GB I 1

Linux 2.4.10, 2.4.10-4GB, 2.4.11, 2.4.12, 2.4.13, 2.4.14, 2.4.15, 2.4.16, 2.4.17, 2.4.18, 2.4.18-
3, 2.4.18-4GB,2.4.18-14, 2.4.19, 2.4.19-4GB, 2.4.20 I 100

Linux 2.4.20-8 I 1

Linux 2.4.21-0.13mdk I 1

MacOS 10.0.0, 10.1.0, 10.1.1, 10.1.2, 10.1.3, 10.1.4, 10.1.5, 10.2.1, 10.2.2, 10.2.3, 10.2.4,
10.2.5, 10.2.6 I 1

MacOS 7.5.3, 7.5.3, 7.5.5, 7.6, 7.6.1, 8.0, 8.1, 9.0, 9.1, 9.2.2 (using TCPMac Ping) C 0

NetBSD 1.1, 1.2, 1.2.1 I 100

NetBSD 1.3, 1.3.1, 1.3.2, 1.3.3 I 1

NetBSD 1.4, 1.4.1, 1.4.2, 1.4.3, 1.5, 1.5.1, 1.5.2, 1.5.3, 1.6, 1.6.1 I 1

Netware 4.11, 4.11 sp9 I 100

Netware 5, 5 sp6a, 5.1, 5.1 sp6 I 100

Netware 6, 6 sp3 I 100

OpenBSD 2.0, 2.1 I 100

OpenBSD 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3 I 1

QNX RTP 4, 6.0, 6.1, 6.2, 6.2.1 I 1

SunOS 5.5, 5.5.1, 5.6, 5.7, 5.8, 5.9 I 1

SunOS (Intel) 5.8 I 1

Windows 95 I 100

Windows NT 3.51 standard I 100

Windows 98, 98 SE I 100

Windows NT 4 standard, sp3, sp4, sp6 I 100

Windows Millennium standard I 100

Windows 2000 standard, sp2, sp3, sp4 I 100

Windows XP Home, Professional I 100

Windows Net standard I 100

Windows 2003 Server standard I 100

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 143

Annex B: Active OS identification tools: Analysis
of Nmap and Xprobe

This Annex describes two active OS identification tools : Nmap, and Xprobe. The
descriptions are based on analysis of the programs’ code and on analysis of traffic they
generate. Nmap and Xprobe combine a great deal of the OS fingerprinting techniques
currently known. For other interesting methods not covered by Nmap, and Xprobe,
the reader can refer to [2], [3] and [11].

The Annex is broken into two sections, one for each tool. In each section, we describe
in detail the packets aimed at the target and the checks conducted on the response
packets. We end each section with some general remarks on OS differences that were
observed during the analysis of the tool.

OS scan with Nmap

Nmap is a network mapper utility designed to scan large networks. It is capable of
determining what hosts are available on the network, what services they are offering,
what operating system they are running, what type of packet filters/firewalls are in use,
and several of other characteristics. We focus here on its OS detection capability.
Nmap’s fingerprinting technique tests the TCP/IP stack implementation of the target
by sending craft packets and observing the responses. The technique is broken down
into nine tests. As of November 2004, the version available for download from
nmap’s website is 3.75. The version examined during this study was 2.54Beta29.
While the new version is still based on the nine tests described below, some
discrepancies should be expected.

Nmap stores all of its known Operating System (OS) fingerprints in a text file named
“nmap-os-fingerprint”. A typical entry in this file is provided below.

Fingerprint Linux 2.1.19 - 2.2.17

TSeq(Class=RI%gcd=<8%SI=>10000%IPID=I%TS=100HZ)

T1(DF=Y|N%W=3C0A|3F25|7B2F|7F53|7C38|B63%ACK=S++%Flags=AS%Ops=MENNTNW)

T2(Resp=N)

T3(Resp=Y|N%DF=Y%W=3C0A|3F25|7B2F|7F53|7C38|B63%ACK=S++%Flags=AS%Ops=MENNTNW)

T4(DF=N%W=0%ACK=O%Flags=R%Ops=)

T5(DF=N%W=0%ACK=S++%Flags=AR%Ops=)

T6(DF=N%W=0%ACK=O%Flags=R%Ops=)

T7(DF=N%W=0%ACK=S%Flags=AR%Ops=)

PU(DF=N%TOS=C0|A0|0%IPLEN=164%RIPTL=148%RID=E%RIPCK=E%UCK=E|F%ULEN=134%DAT=E)

This particular entry associates the results of the nine tests (Tseq, T1, T2, T3, T4, T5,
T6, T7, PU) to the fingerprint of a machine running Linux with kernel versions 2.1.19
to 2.2.17. These tests are described in more detail in the sections below.

144 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

To proceed with the OS scan, Nmap targets two ports on the victim’s machine: one in
the state OPEN and one in the state CLOSED. To find these two ports, Nmap starts
with a port scan on the target. The tool however, has an option that allows the user to
limit the number of ports to be scanned. If Nmap finds no closed ports among the
user-specified ones, it will pick a presumed closed port (greater than 30000).

Description of tests T1-T7

Each test T1 to T4 consists in sending one TCP packet to an open port. They
differ by their TCP flags and, in the T1 case, by the use of a reserved bit.
This bit is the one preceding the URG flag bit and its use is not standard since
it is part of a reserved field as specified by RFC 793 (the protocol standard for
TCP). RFC 3168 (proposed standard) proposes that the last two bits of the
reserved field be used for control of congestion. These two special bits are
referred to as CWR and ECN respectively. The tests T5 through T7 send one
TCP packet each to a closed port and differ only by their TCP flags.

All of these seven crafted packets are sent with the following TCP options:

1. WINDOW SCALE of 10B,

2. NOP,

3. MSS of 265B,

4. TIMESTAMP,

5. EOL.

These options appear in this very specific order. The IP datagrams have total
length of 60B (20B of IP header + 40B of TCP header with options + 0B
of data). The following list summarises the crafted packets with their TCP
flags settings.

T1: [SYN, ECN] packet with TCP options sent to an open port.

T2: NULL packet (none of the flags set) with TCP options sent to an open
port.

T3: [SYN, FIN, URG, PSH] packet with urgent pointer set to 0. The packet is
sent with TCP options to an open port.

T4: [ACK] packet with TCP options sent to an open port.

T5: [SYN] packet with TCP options sent to a closed port.

T6: [ACK] packet with TCP options sent to a closed port.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 145

T7: [FIN, URG, PSH] packet with urgent pointer set to 0. The packet is sent
with TCP options to a closed port.

Nmap captures and analyses the response of the target for each of these
packets. More specifically, it will categorize the response based on six check
criterions:

1. Did we receive a response to this packet? (“Y” or “N”)

2. Is the Don’t Fragment bit set in the target’s response? (“Y” or “N”)

3. What is the TCP Window size value in the target’s response? (two-byte
integer expressed in hexadecimal)

4. What is the TCP Acknowledgement number in the target’s response (in
relation to the sequence number of nmap’s triggering packet)? (“S”, or
“S++”, or “O”) 87

5. What TCP flags are included in the target’s response? (a subset of “B, U,
A, P, R, S, F”) 88

6. What TCP options are included in the target’s response packet? 89 (“L”,
“N”, “M”, “E”, “W”, “T”) 90

The fingerprint format makes use of “%” symbols to separate the responses to
the above criterions. When multiple responses are possible, they are
separated by a “|” symbol.

For example, consider the line beginning with T3 from the Linux example,

T3(Resp=Y|N%DF=Y%W=3C0A|3F25|7B2F|7F53|7C38|B63%ACK=S++%
Flags=AS%Ops=MENNTNW)

It says that the response packet to Nmap’s T3 test would have the following
characteristics:

87 “S” if the Acknowledgment number of the response is equal to the Sequence number
of the triggering packet, “S++” if it is incremented by one, or “O” for any other value.
88 “B” stands for the BOGUS bit because it is supposed to be unused. This bit is the
one preceding the URG bit, that is the ECN as discussed earlier.
89 Options sent back (and thus supported) by the targeted. They can appear in a different
order depending of the target’s operating system.
90 “L” if End of option list (code 0) is set,
 “N” if No-operation option (code 1) is set,
 “M” if MSS option (code 2) is set, followed by “E” if the value is echoed from the
nmap packet’s MSS,
 “W” if Window scale option (code 3) is set,
 “T” if Timestamp option (code 8) is set.

146 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

• Resp=Y|N The target may or may not respond.
• DF=Y The response packet is expected to have the Don’t

fragment bit set.
• W=3C0A|3F25|7B2

F|7F53|7C38|B63
The Window size value expected is one of the
following: 3C0A, or 3F25, or 7B2F, or 7F53, or 7C38,
or B63.

• ACK=S++ The response’s Acknowledgement number is
expected to be equal to triggering packet’s Initial
sequence number plus 1.

• Flags=AS The TCP flags expected are SYN and ACK.
• Ops=MENNTNW The response packet should have the following

options set in this order:
<MSS(Echoed)><NOP><NOP><Timestamp>
<NOP><Window scale>

Note that the first check,“Resp=”, is absent from T1, T4, T5, T6, and T7
fingerprints. This means that lack of a response will not disqualify a match as
long as all the other tests of the fingerprint structure match. Nmap uses this
strategy because generally, Operating Systems do respond to these packets.
Therefore, a lack of response to these packets is more likely attributed to the
network conditions and not the OS itself. For instance, they could be dropped
by a firewall. The criteria “Resp=” appears in T2 and T3 because some
operating system do drop those without responding.

Description of the PU test

PU stands for “port unreachable”. This test probes an ICMP port
unreachable message by sending one UDP packet to a closed UDP port. The
IP datagram total length of the triggering packet is 328B (20B of IP header +
8B of UDP header + 300B of data). The data consist of a certain repeated
byte. The “pattern-byte” is picked randomly each time Nmap sends out this
test.

Recall: The content of an IP datagram encapsulating an ICMP port
unreachable error message is as follows:

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 147

IP header
ICMP header

Data, consisting of the firsts few bytes of the packet that triggered the ICMP error message,
thus in this particular case:

IP header of the crafted packet
+

First “few”91 bytes of the UDP header and data of the crafted packet

Nmap categorises the response based on nine criteria described below. The
six last are concerned by the ICMP data content, which is the echoed IP
datagram that caused the ICMP packet to be sent. Nmaps looks at how much
of its original packet is echoed, and also verifies if some particular fields were
modified.

1. Did we receive a response (an ICMP port unreachable message) to this
packet? (“Y” or “N”)

2. Is the Don’t Fragment bit set in the target’s response? (“Y” or “N”)

3. What Type of service (TOS) is set in the response packet? (hexadecimal
value)

4. What is the value of the IP total length field of the response packet?
(hexadecimal value)

5. What is the IP total length field of the offending packet being echoed?
(hexadecimal value)

6. Has the IP Identification field of the offending packet been echoed
correctly? (“0”, “E”, “F”)92

7. Does the IP checksum of the offending packet being echoed computes?
(“0”, “E”, “F”)93

8. Does the UDP checksum of the offending packet being echoed
computes? (“0”, “E”, “F”)

9. What is the value of the UDP Message length field of the offending
packet being echoed? (hexadecimal value)

91 At least the first 8 bytes following the IP header. More than 8 bytes may be sent
according to RFC 1122 (Requirements for Internet Host – Communication Layers),
section 3.2.2. RFC 1122 is an official standard.
92 “0” if the returned value is zero, “E” (for “as Expected”) if the returned value is
correctly echoed, and “F” otherwise.
93 “0” if the returned value is zero, “E” (for “as Expected”) if the checksum computes,
and “F” otherwise.

148 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

10. Have the Data of the offending packet been echoed correctly? (“E”, “F”)

For example, consider the line beginning with PU from the Linux example,

PU(DF=N%TOS=C0|A0|0%IPLEN=164%RIPTL=148%RID=E%RIPCK=E
%UCK=E|F%ULEN=134%DAT=E)

It says that the response packet to Nmap’s PU test would have the following
characteristics:

• Resp is absent The target normally responds to this packet. If no
response is received for PU test, do not discard the
fingerprint because of it.

• DF=N The Don’t fragment is expected to be 0 (not set).
• TOS=C0 The Type of Service expected should be set to one

of these values: C0, A0, or 0.
• IPLEN=164 The IP total length expected hexadecimal value is

0x0164 (i.e. 356 bytes)
• RIPTL=148 The data corresponding to the IP total length field of the

returned datagram is expected to be 0x0148 (i.e. 328
bytes)

• RID=E The data corresponding to the IP ID field of the returned
datagram is expected to be correctly echoed.

• RIPCK=E The data corresponding to the IP Checksum field of the
returned datagram is expected to compute correctly.

• UCK=E|F The data corresponding to the UDP Checksum field of the
returned datagram may be correct or incorrect.

• ULEN=134 The data corresponding to the UDP Message length field
of the returned datagram is expected to have the value
0x0134 (i.e. 308 bytes)

• DAT=E The data corresponding to the returned datagram’s data
field is expected to be echoed correctly.

Description of test Tseq

This test investigates the predictability of the TCP Initial Sequence Numbers
(ISN) as well as the IP Identification (ID) numbers generation. It also tries to
characterize the TCP timestamp clock update rate of the target’s operating
system.

ISN numbers are generated during the first and second handshake of a TCP
connection. The initiator of the connection sends his ISN in the SYN packet,
and the responding host sends his in the SYN/ACK packet. New IP
identification numbers are generated for every IP packets. As for the TCP
timestamp clock values, they appear when the TCP timestamp option is set.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 149

The Tseq test differs from the other Nmap tests in the sense that it cannot be
based solely on one packet, it requires constructing a sample of packets sent
by the target. Nmap uses a six-packet sample composed of SYN/ACK
packets received from the target. To get these packets, Nmap initiates six
consecutive connections94 in a very short amount of time. If at least 4
responses are received and that the delay between the probes95 is no longer
than one second, nmap considers the sample as being suitable for its
calculations.

The crafted packets that Nmap sends out for this test have the TCP SYN flag
set and have a total length of 60B (20B of IP header + 40B of TCP header
with options + 0B of data). The options are identical to the ones of the tests
T1 through T7.

For each response packet, Nmap collects the values of the following fields:

• The Initial sequence number of the TCP header

• The Identification field of the IP header

• The timestamp value (tsval) of the TCP Timestamp option (if supported).

It then looks at how these values differ from one packet to another. The
following paragraphs summarise the different categories nmap defines to
characterize the target behaviour:

The ISN classes defined by Nmap are:

• Constant ISNs (Class C)

• ISNs that are multiple of 64000 (Class 64K)

• ISNs that are multiple of 800 (Class i800)

• ISNs incremented using random positive increments (Class RI)

• ISNs produced by a true random generator (Class TR)

• Time dependent ISNs (Class TD)

94 The connections are never fully opened however since Nmap tears them down by sending
RST packets immediately after receiving SYN/ACK packets. That is, only the first two
handshakes of the TCP three-way handshakes are completed. This is also known as “half-
open scanning”.

95 nmap has an option that allows the user to set the delay between the transmission of
each stimulus. The longer the delay, the stealthier the tool is. However, in cases where
the location of the system running nmap prevents it from seeing all of its target's traffic,
a longer delay increases the likelihood of getting non-consecutive ISNs. This is
because the target can communicate with other hosts during the sampling period.

150 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

The IP ID classes defined by Nmap are:

• IDs incremented by one each time (Class I)

• IDs incremented by 256 each time (Class BI)96

• IDs incremented using random positive increments (Class RPI)

• IDs coming from a random distribution (Class RD)

• Repeatable IDs (Class C)

• Zeroed out IDs (Class Z)97

The Timestamp classes defined by Nmap are:

• Timestamp clocks updated twice per second (Class 2HZ)

• Timestamp clocks updated 100 times per second (Class 100HZ)

• Timestamp clocks updated 1000 times per second (Class 1000HZ)

• Timestamp option not supported by the OS (Class U)

• Timestamp option set but having a value of zero (Class Z)98

The algorithms Nmap uses to classify the target into these different categories
are rather simplistic. For instance, IP IDs sampled are said to come from a
random distribution if at least one ID number is smaller then its predecessor.
While this is indeed an indicator of a random distribution, a particular sample
may not present this characteristics, but may still come from such a
distribution. That being said, Nmap still achieves good accuracy using its
algorithms.

96 “BI” stands for “broken increment”. This 256-incremental behavior is seen on some
little endian platforms when the operating system “forgets” to reorder the bytes.
Windows 95 falls into this “Broken incremental” IP IDs category.
97 Linux kernel 2.4 falls into this category. This doesn’t mean that this system sends all
packets with an IP ID of zero, but it does do it for all of its SYN/ACK packets.
98 Windows 2000 falls into this category. It supports the option, but waits until the tree-
way handshake is completed before sending any timestamp value.

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 151

To give an example of how to interpret the TSeq test results of a fingerprint
structure, let’s look at the line beginning with TSeq from the Linux example,

TSeq(Class=RI%gcd=<8%SI=>10000%IPID=I%TS=100HZ)

It says that the response packet to Nmap’s TSeq test would find the following
characteristics:

• Class=RI The ISNs are randomly incremented
• Gcd=<8 The Greater Common Divisor of the ISN differences is

expected to be smaller than 8 (hexadecimal value).
• SI=>10000 The standard deviation of the ISN differences is

expected to be greater than 10000.
• IPID=I The IP IDs are incremented by one.
• TS=100HZ The timestamp clock is updated 100 times per second.

General Remarks on OS differences

A quick analysis of the nmap-os-fingerprint file (from Nmap’s version
2.54Beta29) allows to draw the following observations:

• Windows systems respond to every test 99;

• Linux, OpenBSD, FreeBSD, Solaris systems don’t response to T2100;

• The setting of the TCP options in response to the T1 test may be used to
differentiate between broad families of OS. For instance,

- Mac OS systems prior to OS X tend to respond with MEWL or
MEWNNNT;

- Solaris systems tend to respond with NNTWM or NNTNWME;

- Linux systems tend to respond with MNNTNW (newer kernel
version), or MENNTNW (older kernel version);

- OpenBSD, FreeBSD, NetBSD, MacOS X, and Windows family
tend to respond with MNWNNT.

99 Few listed exceptions are
 Windows 98SE + IE5.5sp1: T3(Resp=N), PU(Resp=N|Y)
 Windows NT 4.0 SP 6a + hotfixes : PU(Resp=N|Y)
 Windows XP Professional Release candidate 1 or 2: T2(Resp=N), T3(Resp=N),
T7(Resp=N)
100 In rare cases, some of these systems do answer to T2.

152 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

OS scan with Xprobe

Xprobe fingerprinting technique interrogates the target machine’s ICMP protocol
implementation by sending it craft packets and observing the responses it gets back.
Xprobe sends at most four packets. The program of the version examined is built as a
decision tree, and does not use a look-up fingerprint file. A graphical representation of
this logic tree is given at the end of this section. The version examined during this
study was xprobe1-0.0.2. It is this version that is described below. As of November
2004, the most recent version of xprobe is xprobe2-0.2. The underlying techniques to
identify the OS are essentially the same, but the tool now relies on fuzzy signature
matching and probabilistic guesses. Some additional fields are also examined in
response packets.

Xprobe’s technique is stealthier than Nmap’s. The packets it sends out can appear as
being part of normal traffic operations. It is also an alternative to methods that depend
solely on the differences between TCP protocol implementations. The TCP stacks of
Microsoft based operating systems are very similar and therefore it is often quite
difficult to differentiate between them using TCP fingerprinting techniques.

Description of tests based on the UDP packet

Just like the PU test on Nmap, this test consists on sending a UDP datagram
to a closed UDP port (32132 by default) in order to trigger an ICMP port
unreachable error message in response.

The IP total length of the crafted packet is 98 bytes (20B of IP header + 8B
of UDP header +70B of data). The DF bit flag is set. The 70 bytes of data
carried consist of all zeros.

Note: When a closed UDP port receives a packet, an ICMP Port Unreachable
error message is generated. If the port is open, no reply is generated since
UDP is a stateless protocol. However, when a filtering device is blocking
UDP traffic aimed at a target, the packet will also remained unanswered.
Xprobe assumes a closed UDP destination port, and interprets a non-response
to this crafted packet as being the result of the presence of a device filtering
that port[6].

Xprobe then captures and analyses the response (if any) of the target. More
specifically, this first packet allows Xprobe to conduct the following criterion
checks:

1. Did we receive a response to this packet?

2. Was the Don’t Fragment bit set in the target’s response?

3. What is the IP Time To Live value in the target’s response?

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 153

4. What Type of service was specified in the target’s response? (default?
echoed? Other?)

5. What is the amount of the data being echoed with the target’s response?

6. Were the following fields of the echoed message altered?

- IP total length field

- IP Identification field

- IP Flags and Offset field

- IP checksum field

- UDP checksum field

Note that since Xprobe follows the branches of a logic tree, the program may
stops before completing all checks.

ICMP Echo Request packet

This test is an ICMP Echo request message sent to probe an ICMP Echo reply
message in response.

The IP total length of the crafted packet is 68 bytes (20B of IP header + 8B
of ICMP header + 40B of data). The 40 bytes of data carried consist of all
zeros. The DF bit flag is set. The TOS 8-bit field value is set to “00000110”.
The ICMP type is 8 but the code is nonzero (which is not standard). This is a
trick to differentiate the OSs that automatically zero-out this field from those
who echo back the value in their ICMP Echo Reply.

Xprobe then captures and analyses the response (if any) of the target. More
specifically, this packet allows Xprobe to conduct the following criterion
checks:

1. Did we receive a response to this packet?

2. Was the Don’t Fragment bit set in the target’s response?

3. Was the IP Identification field set to zero?

4. What is the IP Time To Live value in the target’s response?

5. What Type of service was specified in the target’s response?

6. What is the ICMP code in the target’s response?

154 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

ICMP Timestamp Request

Xprobe sends this packet only to test whether or not it gets a response back.
Thus the only criteria is:

1. Did we receive a response to this packet?

ICMP Information Request

Xprobe sends this packet only to test whether or not it gets a response back.
Thus the only criteria is:

1. Did we receive a response to this packet?

ICMP Address Mask Request

Xprobe sends this packet only to test whether or not it gets a response back.
Thus the only criteria is:

1. Did we receive a response to this packet?

General Remarks on OS differences

Windows family systems can be detected using one ICMP echo Request. It
suffices to set the ICMP code field to a nonzero value in the request packet.
In their ICMP Echo Reply, Windows systems overwrite this nonzero value to
set the field to zero while other systems just echo it.

Graphical representation of Xprobe’s logic tree

A scheme representing Xprobe’s logic tree is shown in the following four
pages. This was drawn from examining the program code of xprobe1-0.0.1
and xprobe1-0.0.2.

155

Legend

Checks based on response to UDP Packet

Xprobe sending a packet

Checks based on response to ICMP Echo Request Packet

Checks based on response to ICMP Timestamp Request Packet

Checks based on response to ICMP Information Request Packet

Checks based on response to ICMP Address Mask Request Packet

Indicates that the branch of the tree continues on next page

Green Text Upgrade from version 0.0.1p1 to 0.0.2

156

(1) UDP

Precedence Bits = 0xc0

Precedence
bits checks

Message
Quoting size

check

Linux Kernel 2.0.x/2.2.x/2.4.x (act as routers)
Cisco Routers with IOS 11.x-12.x
Extreme Networks Switches

Not the whole datagram echoed with the
ICMP Port Unreachable Error message

else
(The whole datagram echoed with the

ICMP Port Unreachable Error message)

Cisco Routers with IOS 11.x-12.x
Extreme Networks Switches

Linux Kernel 2.0.x/2.2.x/2.4.x

Integrity of
echoed

UDP
Checksum?

Echoed UDP Checksum = 0 else

Extreme Networks Switches Cisco Routers with IOS 11.x-12.x

TTL Check

TTL < 65 else

Linux Kernel 2.0.x Linux Kernel 2.2.x/2.4.x

Response
Check

No response

ICMP
Echo

Request

ICMP Echo message filtered,
Linux Kernel 2.2.x/2.4.x Assumed

IP ID field
check

ICMP Echo Reply
received

nonzero IP ID IP ID = 0

Linux Kernel 2.4.xLinux Kernel 2..2.x/2.4.5+

DF bit check

DF bit set

Linux Kernel 2.2.x/2.4.5+
(i.e not 2.4.0-2.4.4)

DF bit not set

Linux Kernel 2.4.x

(2)

Precedence Bits != 0xc0

Response
Check

ICMP Port Unreachable
error message

no response

UDP protocol filtered

157

Precedence Bits != 0xc0

Message
Quoting size

check

64 bytes of data echoed else
(which, accordind to xprobe documentation,

corresponds to "more than 64 bytes")

3Com SuperStack II switch SSW/NBSI-CF, 11.1.1.00S38
Nokia IPSO 3.2-3.2.1 releng 783-849
Ricoh Aficio AP4500 Network Laster Printer
Shiva AccessPort Bridge/Router Software V 2.1.0
Linux 2.0.x/2.2.x/2.4.x (???rare cases????)

Sun Solaris 2.3-2.8
HP-UX 11.x
MacOS 7.x-9.x

Response
Check

ICMP Timestamp
Reply

No Response

Sun Solaris 2.3-2.8 HP-UX 11.x
MacOS 7.x-7.9

Most IP Stacks

ICMP
Timestamp

Request
(2)

Integrity of
echoed
IP Total
Length?

20 bytes greater than the original value 20 bytes less than the original value

AIX
BSDI
NetBSD 1.1.x-1.2.x
MacOS X 1.0-1.2

Integrity of
echoed
IP Hdr

Checksum

equal 0

AIX

nonzero

BSDI
NetBSD 1.1.x-1.2.x
MacOS X 1.0-1.2

Integrity of
echoed
IP ID

incorrect OK

Little endian BSDI
Little endian NetBSD
1.1.x-1.2.x

Big endian BSDI
Big endian NetBSD
1.1.x-1.2.x
MacOS X 1.0-1.2

OpenBSD 2.6-2.9
Apollo Domain/OS SR10.4
NFR IDS Appliance
Extreme Networks switch
Network Systems router NS6114
(NSC 6600 series)
Cabletron Systems SSR 8000
System Sowtware, V 3.1 B16

Integrity of
echoed

UDP
Checksum

equal 0

OK

incorrect

Extreme Networks switch
Network Systems router NS6114
(NSC 6600 series)
Cabletron Systems SSR 8000
System Sowtware, V 3.1 B16

NFR IDS
Appliance

OpenBSD 2.6-2.9
Apollo Domain/OS SR10.4
NFR IDS Appliance (mistake??... see Xprobe doc)

Integrity of
echoed
IP Hdr

Checksum

nonzero

OpenBSD 2.6-2.9

equal 0

Apollo Domain/OS SR10.4
NFR IDS Appliance (mistake??)

8 bytes of data echoed

OK

Integrity of
echoed

Flags and
Offset fields

Ultrix

FreeBSD 2.2.x-4.1
NetBSD

Integrity of
echoed
IP Hdr

Checksum

FreeBSD 2.2.x-4.1NetBSD

OK incorrect

equal 0 nonzero

equal 0

Response
Check

ICMP
Echo

Request

(2)

ICMP Echo Reply
received

ICMP Echo message filtered,
Microsoft Windows based
Open/Net/FreeBSD/DG-UX/HP-UX

No Response

158

ICMP Code
field check

Microsoft Windows family All others...

DF bit check

DF bit set not set

nonzeroequal 0

TTL check

Novel (FreeBSD 4.3-
current (?))

Ultrix, Novell

Ultrix,
HPUX 10.20(?)

DF bit check

TTL<129 else

OpenBSD 2.1-2.3.x, 2.4-2.5
NetBSD 1.5, 1.4.1, 1.4
IBM OS/390

Integrity of
echoed

UDP
Checksum

nonzero

OpenBSD 2.1-2.3.x,OpenBSD 2.4-2.5
NetBSD 1.5, 1.4.1, 1.4
IBM OS/390

Response
Check

ICMP
Information

Request

(3)

DF bit set not set

equal 0

ICMP Info Reply no response

Unknown Unix
(accuracy dropped)

OpenVMS
HPUX 10.x
DGUX
SunOS 4.x

Integrity of
echoed
IP ID

OK incorrect

OpenVMS with
Digital TCP Services

HPUX 10.x
DGUX/Compaq Tru64
OpenVMS with
Process Software TCPWare
SunOS 4.x

Integrity of
echoed

IP Header
Checksum

equal 0 nonzero

HPUX 10.x Integrity of
echoed

UDP
Checksum

equal 0 nonzero

DGUX/Compaq Tru64
SunOS 4.x OpenVMS with

Process Software TCPWare

TTL check

TTL< 33 else

Windows 95 Precedence
bits check

equal 0 nonzero

Windows 2000,
SP1, SP2
Windows XP

Other Windows-based OS
Windows 98/98/SE
Windows ME
Windows NTsp3-
Windows NTsp4+

Response
Check

ICMP Timestamp
Reply

No Response

Windows 98/98SE
Windows ME

ICMP
Timestamp

Request
(3)

Windows NT SP 3-
Windows NT SP 4+

Response
Check

ICMP
Address

Mask
Request

(4)
Response

Check

ICMP
Address Mask

Reply

no
response

Windows 98/98SE Windows ME

ICMP
Address Mask

Reply

no
response

Windows NT SP 3- Windows NT SP 4+

TTL Check

> 64 else

DGUX/Compaq Tru64SunOS 4.x

TTL Check

> 64 else

OpenBSD 2.4-2.5
NetBSD 1.5, 1.4.1, 1.4

IBM OS/390

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 159

This page intentionally left blank

160 DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001

List of
symbols/abbreviations/acronyms/initialisms

ARP Address Resolution Protocol

CRC Communications Research Centre

DND Department of National Defence

DNS Domain Name System

DRDC Defence Research and Development Canada

ICMP Internet Control Message Protocol

ID Identifier

IP Internet Protocol

IPSec IP Security Protocol

ISN Initial Sequence Number

LAN Local Area Network

NAT Network Address Translation

NIDS Network Intrusion Detection System

OS Operating System

OSes Operating Systems (plurial)

RFC Request For Comments

TCP Transmission Control Protocol

UDP User Datagram Protocol

VPN Virtual Private Network

WLAN Wireless Local Area Network

DRDC OTTAWA TM 2005-018 / CRC-TN-2005-001 161

Glossary

Active/Passive
information
gathering

In networking, information gathering refers to the
process of collecting information about the network and
its components. The term active refers to methods that
inject traffic (probes) into the network. The term passive
indicate that the process is based on methods that silently
monitor the network to collect information.

Network Intrusion
Detection System
(NIDS)

NIDS sensors are deployed in strategic locations within
the network infrastructure to monitor network traffic
passively in order to detect attacks and intrusions.

OS fingerprinting:

Identification of operating systems by comparing key
features of an observed behaviour with known signatures
(patterns). This process is similar to identifying an
unknown person by taking his or her unique fingerprints
and finding a match in a database of known fingerprints.

packet A small, self-contained parcel of data sent across a
computer network. Each packet contains headers of
encapsulated protocols and data to be delivered. One of
the header identifies the sender and the recipient.

protocol A design that specifies the details of how computers
interact, including the format of messages they exchange
and how errors are handled.

TCP/IP stack TCP/IP stack refers to the implementation of the protocol
suite used in the Internet. Although the suite contains
many protocols, TCP and IP are two of the most
important.

UNCLASSIFIED
SECURITY CLASSIFICATION OF FORM

(highest classification of Title, Abstract, Keywords)

DOCUMENT CONTROL DATA
(Security classification of title, body of abstract and indexing annotation must be entered when the overall document is classified)

1. ORIGINATOR (the name and address of the organization preparing the document.
Organizations for whom the document was prepared, e.g. Establishment sponsoring a
contractor’s report, or tasking agency, are entered in section 8.)

 Communications Research Centre Canada
3701 Carling Avenue
Ottawa, Ontario, CANADA, K2H 8S2

2. SECURITY CLASSIFICATION
 (overall security classification of the document,

including special warning terms if applicable)

 UNCLASSIFIED

3. TITLE (the complete document title as indicated on the title page. Its classification should be indicated by the appropriate
abbreviation (S,C or U) in parentheses after the title.)

 A Multi-Packet Signature Approach to Passive Operating System Detection (U)

4. AUTHORS (Last name, first name, middle initial)

De Montigny-Leboeuf, Annie

5. DATE OF PUBLICATION (month and year of publication of
document)

January 2005

6a. NO. OF PAGES (total
containing information. Include
Annexes, Appendices, etc.)

177

6b. NO. OF REFS (total cited in
document)

33

7. DESCRIPTIVE NOTES (the category of the document, e.g. technical report, technical note or memorandum. If appropriate, enter the type of
report, e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is covered.)

 Joint CRC/DRDC Technical Report

8. SPONSORING ACTIVITY (the name of the department project office or laboratory sponsoring the research and development. Include the
address.)

 Defence R&D Canada - Ottawa
 3701 Carling Avenue
 Ottawa, Ontario, K1A 0Z4

9a. PROJECT OR GRANT NO. (if appropriate, the applicable research
and development project or grant number under which the
document was written. Please specify whether project or grant)

15bf

9b. CONTRACT NO. (if appropriate, the applicable number under
which the document was written)

10a. ORIGINATOR’S DOCUMENT NUMBER (the official document
number by which the document is identified by the originating
activity. This number must be unique to this document.)

CRC-TN-2005-001

10b. OTHER DOCUMENT NOS. (Any other numbers which may
be assigned this document either by the originator or by the
sponsor)

DRDC Ottawa TM 2005-018

11. DOCUMENT AVAILABILITY (any limitations on further dissemination of the document, other than those imposed by security classification)

 (x) Unlimited distribution
 () Distribution limited to defence departments and defence contractors; further distribution only as approved
 () Distribution limited to defence departments and Canadian defence contractors; further distribution only as approved
 () Distribution limited to government departments and agencies; further distribution only as approved
 () Distribution limited to defence departments; further distribution only as approved
 () Other (please specify):

12. DOCUMENT ANNOUNCEMENT (any limitation to the bibliographic announcement of this document. This will normally correspond to

the Document Availability (11). However, where further distribution (beyond the audience specified in 11) is possible, a wider
announcement audience may be selected.)

UNCLASSIFIED

SECURITY CLASSIFICATION OF FORM DDCCDD0033 22//0066//8877

UNCLASSIFIED
SECURITY CLASSIFICATION OF FORM

13. ABSTRACT (a brief and factual summary of the document. It may also appear elsewhere in the body of the document itself. It is highly
desirable that the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the
security classification of the information in the paragraph (unless the document itself is unclassified) represented as (S), (C), or (U).
It is not necessary to include here abstracts in both official languages unless the text is bilingual).

Remote operating system discovery can provide valuable contextual information regarding the computers connected to
the network. In particular, operating system discovery can help identify potential vulnerable computers or may help
prioritize alarms and responses in times of attack. The Network Security Research Group at the Communication
Research Centre (CRC) has developed novel techniques for passive operating system discovery. The methodology
developed allows derivation of a signature from a set of packets. The tests are conducted passively on regular traffic.
They are non-intrusive and do not rely on access to application or user data. Because they are passive, the techniques
do not consume bandwidth and do not disrupt network assets. Over a dozen tests have been developed to analyse
headers of packets seen on a network. The tests are conducted on headers of various types of protocols: ARP, IP,
ICMP, UDP and TCP. This document describes the tests in detail. They have been implemented in a prototype written
in JAVA, which includes a database containing the “fingerprints” of almost 200 versions of operating systems. The
prototype was used to collect these signatures from our testbed and was also used on real user traffic for preliminary
evaluation of the tests’ performance.

14. KEYWORDS, DESCRIPTORS or IDENTIFIERS (technically meaningful terms or short phrases that characterize a document and could be helpful
in cataloguing the document. They should be selected so that no security classification is required. Identifiers such as equipment model
designation, trade name, military project code name, geographic location may also be included. If possible keywords should be selected from a
published thesaurus. e.g. Thesaurus of Engineering and Scientific Terms (TEST) and that thesaurus-identified. If it is not possible to select
indexing terms which are Unclassified, the classification of each should be indicated as with the title.)

passive network traffic monitoring, operating system fingerprinting, multi-packet signatures

UNCLASSIFIED

SECURITY CLASSIFICATION OF FORM

